
by

TEJAS MUKESHBHAI VASAVADA
201121011

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

December, 2018

Distributed TDMA Scheduling in Tree
based Wireless Sensor Networks with
Multiple Data Attributes and Multiple

Sinks

Declaration

I hereby declare that

i) The thesis comprises of my original work towards the degree of Doctor of
Philosophy at Dhirubhai Ambani Institute of Information and Communica-
tion Technology and has not been submitted elsewhere for a degree,

ii) Due acknowledgment has been made in the text to all the reference material
used.

Tejas Mukeshbhai Vasavada

Certificate

This is to certify that the thesis work entitled DISTRIBUTED TDMA SCHEDUL-
ING IN TREE BASED WIRELESS SENSOR NETWORKS WITH MULTIPLE DATA
ATTRIBUTES AND MULTIPLE SINKS has been carried out by TEJAS MUKESHB-
HAI VASAVADA for the degree of Doctor of Philosophy at Dhirubhai Ambani
Institute of Information and Communication Technology under my supervision.

Prof. Sanjay Srivastava
Thesis Supervisor

i

Dedicated to my family

Acknowledgements

I am heartily thankful to my thesis supervisor Prof. Sanjay Srivastava for his constant

guidance, support and motivation. He is always ready to discuss with me and clear my

doubts. Without his guidance, I would not be able to produce this work.

I extend my thanks to my research progress committee members, Prof.V.Sunitha

and Prof. Srikrishnan Divakaran. Their suggestions during Research Progress Seminars

helped me to find appropriate directions for research work.

I can’t forget Dr. Manish Chaturvedi, my senior in PhD studies (and now faculty

member at Pandit Deendayal Petroleum University, Gandhinagar). He has been always

ready to answer my technical questions. His moral support made my task easier.

I am also thankful to DA-IICT help-desk people who helped me to use high speed

computing servers to execute simulations.

I thank my wife Rutvi who gave me moral support to continue my studies. Lastly, I

thank my parents and almighty god whose blessings are always with me.

Contents

Abstract xi

List of Abbreviations xii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Data Collection . 1
1.2 Topology Control . 2
1.3 MAC Protocols . 4
1.4 Centralized v/s. Distributed Algorithms 6
1.5 Homogeneous v/s. Heterogeneous Networks 8
1.6 Multiple sinks Networks . 8
1.7 Major Contribution . 9
1.8 Summary . 10
1.9 Organization of Thesis . 10

2 Related Work 11
2.1 Classification of Scheduling Algorithms 11

2.1.1 General Approaches . 12
2.1.2 Aggregated Convergecast . 13
2.1.3 Raw Convergecast . 20

2.2 Fault Tolerance and Adapting to Workload Variation 21
2.3 Scheduling and Tree Formation in Multiple Sinks Networks 24
2.4 Research Gap . 28
2.5 Summary . 28

3 Problem Definition 29
3.1 Motivation . 29
3.2 Problem Statement . 31
3.3 Assumptions . 31
3.4 Objectives . 32
3.5 Description . 34
3.6 Summary . 34

v

4 Attribute Aware Joint Scheduling and Tree formation (AAJST) Algo-
rithm 35
4.1 Motivation . 35
4.2 Problem Statement . 38

4.2.1 Assumptions . 38
4.2.2 Objectives . 38

4.3 Attribute Aware Joint Scheduling and Tree formation (AAJST) for Single
Sink Heterogeneous Networks . 39
4.3.1 AAJST Algorithm . 39
4.3.2 Correctness of Algorithm . 45

4.4 Simulation Results . 47
4.4.1 Simulation Design . 47
4.4.2 Simulation Setup . 49
4.4.3 Performance Parameters . 49
4.4.4 Discussion of Results . 49

4.5 Summary . 55

5 Schedule Length Balancing for Multi sink HoMogeneous networks (SLBMHM)
Algorithm 56
5.1 Motivation . 56
5.2 Problem Statement . 58

5.2.1 Assumptions . 58
5.2.2 Objectives . 58

5.3 SLBMHM Algorithm . 59
5.3.1 Illustration of the Algorithm with an Example 59
5.3.2 Flow Diagram of the Algorithm 62
5.3.3 Steps of the Algorithm . 62
5.3.4 Correctness of the Algorithm . 69
5.3.5 Schedule length (SH) as function of Average Density (σ) and Height

(h) of Tree . 72
5.4 Simulation Results . 73

5.4.1 Simulation Design . 74
5.4.2 Simulation Setup . 76
5.4.3 Discussion of Results . 76
5.4.4 Quantitative Comparison of Results 86

5.5 Summary . 88

6 Schedule Length Balancing for Multi-sink HeTerogeneous networks (SLBMHT)
Algorithm 89
6.1 Motivation . 89
6.2 Problem Definition . 90
6.3 Problem Statement . 91

6.3.1 Assumptions . 91
6.3.2 Objectives . 91

6.4 SLBMHT Algorithm . 91
6.4.1 Illustration of the Algorithm with an Example 91
6.4.2 Flow Diagram of the Algorithm 95
6.4.3 Steps of the Algorithm . 95

vi

6.4.4 Correctness of the Algorithm . 101
6.4.5 Schedule length (SH) as function of Average Density (σ), height

(h) and No. of Attributes (γ) . 102
6.5 Simulation Results . 104

6.5.1 Simulation Design . 104
6.5.2 Simulation Setup . 105
6.5.3 Discussion of Results . 105
6.5.4 Quantitative Comparison of Results 117

6.6 Summary . 121

7 Conclusion & Future Work 122
7.1 Conclusion . 122
7.2 Future Work . 124

8 List of Publications 126
8.1 Papers Published . 126
8.2 Paper Under Preparation . 126

Appendices 132

A Pseudo-code for SLBMHM Algorithm 133
A.1 Procedures Executed at Sensor Nodes . 133
A.2 Procedures Executed at Sink Nodes . 136

B Pseudo-code for SLBMHT Algorithm 137

vii

Abstact

Data collection is an important application of wireless sensor networks. Sensors are

deployed in given region of interest. They sense physical quantity like temperature,

pressure, solar radiation, speed and many others. One or more sinks are also deployed in

the network along with sensor nodes. The sensor nodes send sensed data to the sink(s).

This operation is known as convergecast operation.

Once nodes are deployed, logical tree is formed. Every node identifies its parent node

to transmit data towards sink. As TDMA (Time Division Multiple Access) completely

prevents collisions, it is preferred over CSMA (Carrier Sense Multiple Access). The next

step after tree formation is to assign time slot to every node of the tree. A node transmits

only during the assigned slot. Once tree formation and scheduling is done, data transfer

from sensors to sink takes place.

Tree formation and scheduling algorithms may be implemented in centralized manner.

In that case, sink node executes the algorithms and informs every node about its parent

and time-slot. The alternate approach is to use distributed algorithms. In distributed

approach, every node decides parent and slot on its own. Our focus is on distributed

scheduling and tree formation.

Most of the researchers consider scheduling and parent selection as two different prob-

lems. Tree structure constrains efficiency of scheduling. So it is better to treat scheduling

and tree formation as a single problem. One algorithm should address both in a joint

manner. We use a single algorithm to perform both i.e. slot and parent selection. The

main contributions of this thesis are explained in subsequent paragraphs.

In the first place, we have addressed scheduling and tree formation for single-sink

heterogeneous sensor networks. In a homogeneous network, all nodes are of same type.

viii

For example, temperature sensors are deployed in given region. Many applications require

use of more than one types of nodes in the same region. For example, sensors are deployed

on a bridge to monitor several parameters like vibration, tilt, cracks, shocks and others.

So, a network having more than one types of nodes is known as heterogeneous network.

If all the nodes of network are of same type, the parent selection is trivial. A node

can select the neighbor nearest to sink as parent. In heterogeneous networks, a node

may receive different types of packets from different children. To maximize aggregation,

appropriate parent should be selected for each outgoing packet such that packet can

be aggregated at parent node. If aggregation is maximized, nodes need to forward less

number of packets. So, less number of slots are required and energy consumption would

be reduced. We have proposed AAJST (Attribute Aware Joint Scheduling and Tree

formation) algorithm for heterogeneous networks. The objective of the algorithm is to

maximize aggregation. The algorithm is evaluated using simulations. It is found that

compared to traditional approach of parent selection, the proposed algorithm results in

5% to 10% smaller schedule length and 15% to 30% less energy consumption during data

transfer phase. Also energy consumption during control phase is reduced by 5%.

When large number of nodes are deployed in the network, it is better to use more

than one sinks rather than a single sink. It provides fault tolerance and load balancing.

Every sink becomes root of one tree. If finer observations are required from a region,

more number of nodes are deployed there. That is, node deployment is dense. But the

deployment in other regions may not be dense because application does not require the

same. When trees are formed, tree passing through the dense region results in higher

schedule length compared to the one passing through the sparse region. Thus schedule

lengths are not balanced.

For example, trees are T1 and T2. Their schedule lengths are SH1 and SH2 respec-

tively. Every node in tree Ti will get its turn to transmit after SHi time-slots. If there is a

large difference between SH1 and SH2, nodes of one tree (having large value of SHi) will

wait for very long time to get turn to transmit compared to the nodes of the other tree

(having small value of SHi). But if SH1 and SH2 are balanced, waiting time would be

ix

almost same for all the nodes. Thus schedule lengths should be balanced. Overall sched-

ule length (SH) of the network can be defined as max(SH1,SH2). If schedule lengths are

balanced, SH would also be reduced.

We have proposed an algorithm known as SLBMHM (Schedule Length Balancing

for Multi-sink HoMogeneous Networks). It guides every node to join a tree such that

the schedule lengths of resulting trees are balanced. Through simulations, it is found

that SLBMHM results 13% to 74% reduction in schedule length difference. The overall

schedule length is reduced by 9% to 24% compared to existing mechanisms. The algorithm

results in 3% to 20% more energy consumption during control phase. The control phase

involves transfer of control messages for schedule length balancing and for slot & parent

selection. The control phase does not take place frequently. It takes place at longer

intervals. So, additional energy consumption may not affect the network lifetime much.

No change in energy consumption during data transmission phase is found.

The schedule lengths may be unbalanced also due to difference in heterogeneity levels

of regions. For example, in one region, two different types of sensors are deployed. But in

the other region, four different types of sensors are present. When heterogeneity is high,

aggregation becomes difficult. As a result, more packets flow through the network. Thus

schedule length of the tree passing through region of two types of nodes will have smaller

schedule length than the tree passing through the region of four types of nodes.

We have proposed an algorithm known as SLBMHT (Schedule Length Balancing

for Multi-sink HeTerogeneous Networks). It is an extension of SLBMHM. The proposed

algorithm is capable of balancing schedule lengths no matter whether imbalance is caused

due to difference in density or difference in heterogeneity. It is also evaluated through

simulations. It is found that the SLBMHT algorithm results in maximum upto 56%

reduction in schedule length difference, maximum upto 20% reduction in overall schedule

length and 2% to 17% reduction in energy consumption per TDMA frame during data

transfer phase. It results in maximum 7% more energy consumption during control phase.

As control phase does not take place very frequently, increase in energy consumption

during control phase can be balanced by reduction in energy consumption during data

x

phase. As a result, network lifetime is going to increase.

xi

List of Abbreviations

MAC Medium Access Control

TDMA Time Division Multiple Access

CSMA Carrier Sense Multiple Access

GPS Global Positioning System

DRAND Distributed RANDomized Algorithm

DD-TDMA Deterministric Distributed TDMA

RBCA Receiver Based Channel Access

LBCA Link Based Channel Access

GLASS Grid based LAtin Square Scheduling

FlexiTP Flexible TDMA Protocol

MOSS Many to One Sensors to Sink

DICA Distributed Algorithm for Integrated tree Construction

and data Aggregation

TSCH Time-Slotted Channel Hopping

DETA Delay Efficient Traffic Aware

FTS Fault Tolerant Slot

MFS Multi Function Slot

AAJST Attribute Aware Joint Scheduling & Tree Formation

SLBMHM Schedule Length Balancing for Multi-sink HoMogeneous

networks

SLBMHT Schedule Length Balancing for Multi-sink

HeTerogeneous networks

xii

List of Figures

1.1 Illustration of Cluster based Logical Topology 3
1.2 Illustration of Tree based Logical Topology 4
1.3 Illustration of Scheduling in Aggregated Convergecast [12] 5
1.4 Illustraion of Scheduling in Raw Convergecast [12] 5

2.1 Classification of Distributed Scheduling Algorithms 12
2.2 Sample Node Deployment to Illustrate Joint Approach [21] 14
2.3 Sequential Approach: First Tree then Schedule [21] 15
2.4 Joint Approach: Tree and Schedule Formation Together [21] 15
2.5 Illustraion of Bottomp-Up Scheduling and Tree Formation [21] 18
2.6 Illustration of Difference between Homogeneous and Heterogeneous Networks 19

4.1 Illustration of Difference between Homogeneous and Heterogeneous Networks 36
4.2 Illustration of Scheduling and Tree Formation using DICA EXTENSION 40
4.3 Illustration of Scheduling and Tree Formation using AAJST 40
4.4 Dependency of Aggregation Factor on No. of Attributes 50
4.5 Dependency of Schedule Length on No. of Attributes 51
4.6 Dependency of Energy Consumption during Data Phase on No. of Attributes 52
4.7 Dependency of Total No. of Transmission Slots on No. of Attributes . . . 52
4.8 Dependency of Control Overhead on No. of Attributes 53
4.9 Dependency of Energy Consumption during Control Phase on No. of At-

tributes . 54

5.1 Illustration of Node Deployment for SLBMHM Algorithm 59
5.2 Illustration of Formation of Temporary Trees in SLBMHM Algorithm . . 60
5.3 Flow Diagram of SLBMHM Algorithm - Part I 62
5.4 Flow Diagram of SLBMHM Algorithm - Part II 63
5.5 Different Sink Deployments . 74
5.6 Dependency of Fractional Density Difference on Density Deviation 79
5.7 Dependency of Fractional Difference in Schedule Lengths on Density De-

viation . 80
5.8 Dependency of Max. Schedule Length on Density Deviation 82
5.9 Dependency of Control Overhead on Density Deviation 84
5.10 Dependency of Energy Consumption during Control Phase on Density De-

viation . 85

6.1 Illustration of Node Deployment for SLBMHT Algorithm) 92
6.2 Illustration of Formation of Temporary Trees in SLBMHT Algorithm . . 92
6.3 Flow Diagram of SLBMHT Algorithm - Part I 96

xiii

6.4 Flow Diagram of SLBMHT Algorithm - Part II 97
6.5 Dependency of Fractional difference in Schedule Lengths on Heterogeneity

Difference . 107
6.6 Dependency of Max. Schedule Length on Heterogeneity Difference 110
6.7 Dependency of Control Overhead on Heterogeneity Difference 112
6.8 Dependency of Energy Consumption during Control Phase on Heterogene-

ity Difference . 114
6.9 Dependency of Total Slots on Heterogeneity Difference 115
6.10 Dependency of Energy Consumption per Duty Cycle on Heterogeneity Dif-

ference . 116

xiv

List of Tables

2.1 Summary of Aggregation Convergecast Scheduling Algorithms 18

4.1 Notations used in AAJST Algorithm (taken from [21]) 43
4.2 Different Simulation Scenarios . 47
4.3 Simulation Setup . 48

5.1 Notations used in SLBMHM Algorithm 64
5.2 Node Distribution Scenarios . 75
5.3 Simulation Setup . 76
5.4 Percentage Improvement in Schedule Length Difference 86
5.5 Percentage Improvement in Maximum Schedule Length 87
5.6 Percentage Increase in Energy Consumption during Control Phase 87

6.1 Additional Notations used in SLBMHT algorithm 96
6.2 Heterogeneity in two regions . 105
6.3 Percentage Improvement in Schedule Length Difference 118
6.4 Percentage Improvement in Maximum Schedule Length 118
6.5 Percentage Reduction in Energy Consumption during Data Phase 119
6.6 Percentage Increase in Energy Consumption during Control Phase 119

xv

Chapter 1

Introduction

This chapter presents an introduction to the problem domain. Here the data collection

process is explained. Effectiveness of data collection process depends on choice of topology

control method and MAC protocol. Different topology control methods like tree and

cluster are explained. Two important MAC protocols, CSMA (Carrier Sense Multiple

Access) and TDMA (Time Division Multiple Access) are explained and compared. As our

work is about multi-sink heterogeneous networks, this chapter also explains importance

of deploying multiple sinks and need of heterogeneous networks.

1.1 Data Collection

Sensors are tiny electro-mechanical devices. They can sense different physical quantities.

They are placed in the area where parameters of interest are to be measured. There are

various types of sensors like temperature sensor, pressure sensor, humidity sensor, solar

radiation sensor and many more. As mentioned in [1], some real deployments of sensor

networks are for habitat monitoring ([2]), environmental monitoring ([3],[4]), volcano

monitoring ([5],[6]), water monitoring ([7]), civil health monitoring ([8],[9]) and weather

monitoring ([10]).

The sensors sense the environment and send the readings to the sink. As mentioned

in [12], this many-to-one data transfer is known as convergecast. The opposite to con-

vergecast is broadcast (or multicast) where source is one and destinations are more than

one.

The data collection operation may be periodic or aperiodic. In periodic data collec-

1

tion, sensors send readings after every fixed period. In aperiodic data collection, sensors

send the readings when asked by sink or when a certain event occurs. For example,

temperature sensors are continuously sensing temperature of a region. In periodic data

collection, temperature values are sent to sink after certain specific period. But in aperi-

odic collection, sensors send the reading only when temperature crosses certain threshold.

Data transfer from sensors to sink can take place in following two different methods:

(i) Multihop data transfer (ii) Using mobile nodes. In case of multihop data transfer,

a path is established from data sending sensor to the sink. The path consists of one or

more other sensors. Data generated by the source sensor is forwarded by nodes in the

path towards the sink. In the other method, some mobile node visits all the sensors one

by one and collects the data. Finally, it goes to the sink and submits the data collected

from all the sensors.

Mobile element based data gathering is surveyed in detail in [11]. The main research

issues are : (i) Minimizing data collection latency : Total time taken to collect data from

all sensors should be minimized. (ii) Reducing mobile element discovery time: Every

sensor has to discover presence of mobile node in its proximity. Then only data transfer

can begin. Discovery time should be minimized to reduce overall data collection latency.

(iii) Mathematical modeling of data collection: Data collection process is modeled as a

queuing system. Different performance measures are analyzed using queuing theory. One

such parameter is average waiting time i.e. how long a node has to wait until it can

transfer packets to mobile element.

It is not always feasible to use mobile elements for data collection. For example, mobile

elements may not be able to work in very harsh environment. Multihop forwarding is

not affected by harshness of environment. But it requires reasonable density of nodes for

the sake of connectivity. That is, every node should have at least one path to sink node.

Otherwise some nodes may be disconnected. The readings sensed by them may not reach

the sink node. Our focus is on multi-hop data transfer.

1.2 Topology Control

Formation of network topology is the primary requirement of multi-hop data transfer.

Once nodes are deployed, some logical topology must be formed. Tree and Cluster are two

2

well-known topology control mechanisms. In a cluster, nodes are divided into geographical

groups. Each group has a group leader (known as cluster head). All nodes in the group

send packets to cluster head. Cluster head may be directly connected to sink or it may

send packets to sink via multi-hop path passing through other cluster heads. Within a

cluster, a node may be directly connected to the cluster head or there may be a multihop

path from node to the cluster head.

In Figure 1.1, cluster based topology is illustrated. It is seen that node filled with black

color is a sink. Nodes filled with dashed lines are cluster heads. Cluster is represented as

a circle. All nodes present in a circle are in same cluster. It is also possible that clusters

may be overlapping. In that case, some nodes may be member of more than one clusters.

This is true for nodes present in peripheri of a cluster.

Figure 1.1: Illustration of Cluster based Logical Topology

In case of tree topology, sink node acts as the root of the tree. Every node selects

one neighbor node as parent. Here neighbor means a node within radio radius. That

is, at a single hop distance. The parent of a node is frequently nearer to sink i.e. at a

smaller hop distance. Every node sends its packet to parent node. The parent forwards

the packet to its parent. Thus packet finally reaches the sink. In Figure 1.2, tree based

topology is shown. The figure is self explanatory.

It is seen from Figure 1.1 that node may have multihop path to cluster head. In other

3

Figure 1.2: Illustration of Tree based Logical Topology

words, every cluster can be considered as a tree rooted at cluster head. Thus tree is a

very basic topology. So, we are focused on tree based networks.

1.3 MAC Protocols

Once topology is formed, next issue is choice of Medium Access Control (MAC) mecha-

nism. Following two methods are widely used in sensor networks: CSMA (Carrier Sense

Multiple Access) and TDMA (Time Division Multiple Access). In case of CSMA, nodes

contend for channel. Whereas in TDMA, every node is assigned one transmission slot.

Node transmits to its parent in the assigned slot only. As nodes take turns to transmit,

collisions do not occur. In contrast to CSMA, TDMA completely prevents collisions. If

collision occurs, sender node has to retransmit its packet. Thus more energy is consumed.

TDMA results in better energy savings than CSMA. TDMA has some limitations

also. During a TDMA cycle if a node has no packet to transmit, its time-slot remains

unutilized. At low traffic load, TDMA results in wastage of bandwidth. It is meaningful

to use TDMA when traffic at every node is moderate or high. In this work, we are focused

on TDMA scheduling of tree based wireless sensor networks. Every node is assigned one

or more time slots to transmit packets to the parent node.

4

Figure 1.3: Illustration of Scheduling in Aggregated Convergecast [12]

Figure 1.4: Illustraion of Scheduling in Raw Convergecast [12]

5

As mentioned earlier, data transfer from sensors to sink(s) is known as convergecast

operation. As defined in [12], there are two types of convergecast: (i) Raw (ii) Aggregated.

In raw convergecast, a node forwards all incoming packets to outgoing edge. If node has

n incoming packets, it sends out (n+1) packets. Here n packets have come from children

and 1 packet is generated by node itself. So count is (n + 1). Whereas in aggregated

convergecast, a node merges all incoming packets with its own packet and sends out only

one packet. Possible aggregation functions are sum, count, average, max, min and many

others. It depends on application whether raw convergecast is needed or aggregated

convergecast. If every reading is important, raw convergecast should be used. If users

are interested only in summarized data, aggregated convergecast should be used.

Figures 1.3 and 1.4 illustrate assignment of time-slots to edges of a tree in case of

aggregated convergecast and raw convergecast respectively. Sink is denoted by S. Sink

node is at the root of the tree. Straight lines indicate child-parent relationship. Whereas

dashed line between two nodes indicate that both are in interference range of each other.

In case of aggregated convergecast, every edge is assigned one time slot. The reason

is that every node merges all incoming packets into one packet and sends out a single

packet. In case of raw convergecast, every node forwards all incoming packets to output

and also its own packet. Thus an edge is assigned multiple time slots. We are focused on

TDMA scheduling of tree based wireless sensor networks for aggregated convergecast.

1.4 Centralized v/s. Distributed Algorithms

Once sensor nodes are deployed, tree formation and scheduling algorithms are executed.

Based on place of execution, the algorithms can be classified as follows: (i) Centralized (ii)

Distributed. The algorithms presented in [13], [14], [15], [16] and [17] are few examples

of centralized algorithms. The centralized algorithms run at the sink node. Sink knows

the entire topology. Sink executes scheduling and parent selection algorithms. Once

parent and slot are decided for every node, sink has to spread this information within

the network so that each and every node would know its parent and slot. In case of

distributed algorithms, every node decides its parent and slot itself. Sink does not play

any role. Every node should know IDs of its neighbors only, not entire topology.

Centralized algorithms are easy to implement but they require sink to know entire

6

network topology. When nodes are randomly deployed, every node has to inform its

location to sink. Thus GPS (Global Positioning System) support should be available at

every node. But GPS coverage may not be available in some odd locations. The other way

for sink to derive topology is that every node should send its neighborhood information

to sink. The information may contain list of neighbors and estimated distance from

each neighbor. Every node may broadcast a special packet known as PROBE packet.

From signal strength of PROBE received from neighbor, distance from neighbor can be

estimated. Based on neighborhood information received from all the nodes, sink could

derive entire topology.

Distributed algorithms do not require sink to know entire topology. They have other

challenges like avoiding race conditions. That is, more than one nodes may attempt

parent/slot selection simultaneously. They end up selecting the same slot which causes

interference at other nodes. Distributed algorithms need to prevent racing. This requires

message exchange between neighbors. Thus extra traffic is generated.

When there is a change in topology i.e. new nodes are added or some of existing nodes

die, tree-repairing and rescheduling both are required. In case of centralized algorithms,

sink has to perform tree-repairing and rescheduling because sink has originally generated

tree and schedule. But in distributed algorithms, repairing and rescheduling can be done

locally.

As such lifetime of a network consists of repeated cycles of two phases: control phase

and data phase. During control phase, scheduling and tree formation takes place. During

data phase, actual data is transferred from nodes to sink. The control phase takes place

after longer intervals when substantially large number of nodes die or new nodes are

added. That is, only when complete rescheduling is required. In both centralized and

distributed algorithms, extra traffic is generated during control phase. In centralized

algorithms, nodes have to propagate location information to sink and sink has to send

slot/parent information back to nodes. In distributed algorithms, neighbors need to

perform some message exchange for selection of collision-free slots. But when few nodes

die, distributed algorithms seem more effective because repairing can be done locally.

Centralized algorithms can not capture real-time interference relationships. Due to

advantages like scheduling and tree formation using knowledge of only neighbors and

local repairing, we are focused on distributed scheduling and tree formation algorithms.

7

Centralized algorithms may be used for bench-marking.

1.5 Homogeneous v/s. Heterogeneous Networks

In a homogeneous network, only one type of nodes are present in the entire region of

interest. For example, temperature sensors are deployed in an area to sense variation in

temperature.

In many real applications, it is required to sense more than one quantities at the same

time and place. For example, sensors are deployed on a bridge to monitor several param-

eters like vibration, tilt, cracks, shocks and others. A single type of sensor may not be

able to sense all the parameters. So different types of sensors need to be deployed. Often

sensor networks have more than one type of nodes present. For example, temperature

sensors, pressure sensors, solar radiation sensors all are present in a single network. Such

a network is known as heterogeneous network.

Different types of sensors are deployed together. They are part of the same tree. So,

one type of sensor has to forward packets coming from different types of sensors. In

homogeneous networks, every node may receive multiple packets (one packet from each

child), but it sends out only packet. All incoming packets can be aggregated with node’s

own packet. But in heterogeneous network, perfect aggregation is not possible. If a

temperature sensor receives a pressure reading, temperature and pressure readings can

not be aggregated. For raw convergecast, every node has to forward all incoming packets

in both homogeneous and heterogeneous networks.

As mentioned in [45], often term ‘Attribute’ is used to refer to the type of reading

present in the packet. That is, temperature reading and pressure reading are considered

two different attributes. If a network has two types of nodes present (e.g. temperature

sensors and pressure sensors), it can be said that two different attributes are present in

the network.

1.6 Multiple sinks Networks

When large number of nodes are present in the network, it is desirable to deploy more

than one sinks. If only one sink is present, all the nodes would send packets to that sink

8

only. In other words, all the nodes would join the same tree i.e. rooted at the only sink.

As network size grows, size of the tree in terms of diameter would also grow. So packets

generated by nodes far from root node would take long time to reach the sink.

If multiple sinks are deployed, workload can be distributed between sinks. If two

sinks are deployed, some nodes would join the tree rooted at first sink and the others

may join the tree rooted at second sink. Thus when multiple sinks are present, size of an

individual tree is reduced. Thus time required to deliver packets to root is also reduced.

Other advantage of multiple sinks is fault tolerance. If one sinks fails, nodes may start

sending data to different sink.

In this work, we have considered presence of multiple sinks in the network.

1.7 Major Contribution

We have worked on distributed TDMA scheduling of multi-sink tree based heterogeneous

wireless sensor networks. Following are main contributions of this thesis:

1. Parent selection method for heterogeneous sensor networks is proposed. The objec-

tive is to maximize aggregation. The method is incorporated into joint scheduling

and parent selection proposed in [21]. The algorithm proposed in [21] is for ho-

mogeneous networks. It is modified to work with heterogeneous networks. It is

suggested that every node should forward different type of packet to different node.

That is, node should select parent based on type of packet. Our proposed algorithm

is named as AAJST (Attribute Aware Joint Scheduling & Tree formation). It is

shown through simulations that proposed algorithm results in reduction in schedule

length and better energy conservation.

2. Schedule length balancing algorithm is proposed to balance schedule lengths of trees

in case of multi-sink homogeneous networks considering that node distribution can

be non-uniform. When node distribution is not uniform, trees rooted at different

sinks may be of different size. As a result, their schedule lengths are likely to be

different. The proposed algorithm guides every node to decide which tree (i.e. sink)

to join such that when actual scheduling & tree formation algorithm runs, it results

in balanced schedule lengths across the trees. As a final result, overall schedule

9

length of the network is reduced. The proposed algorithm is named as SLBMHM

(Schedule Length Balancing for Multi-sink HoMogeneous networks).

3. It is possible that even if node distribution is uniform in the network, different trees

have different levels of heterogeneity. That is, one tree has two different types of

nodes. The other tree has four different types of nodes. It is likely that first tree has

smaller schedule length than the second one. Algorithm proposed in step 2 above

is extended to balance schedule lengths of heterogeneous multi-sink networks. The

resulting algorithm is known as SLBMHT (Schedule Length Balancing for Multi-

sink HeTerogeneous networks).

1.8 Summary

In this chapter, data collection in sensor networks is introduced. Different topology

control mechanisms and MAC protocols are discussed. Merits and demerits of centralized

and distributed algorithms are also mentioned. Importance of heterogeneous networks is

explained. Advantages of using multiple sinks are presented. At last, major contributions

of the thesis are enlisted.

1.9 Organization of Thesis

Organization of the rest of the thesis is as follows: Related literature is reviewed in

Chapter 2. In Chapter 3, problem definition is discussed along with all assumptions and

objectives. The scheduling & tree formation in single sink heterogeneous networks is

presented in Chapter 4. The schedule length balancing algorithms for homogeneous and

heterogeneous multi-sink networks are presented in Chapter 5 and 6 respectively. The

thesis is concluded in Chapter 7.

10

Chapter 2

Related Work

In this chapter, a review of related literature is presented. We are focused on distributed

scheduling and tree formation algorithms in single-sink and multi-sink networks. In the

first subsection, distributed scheduling algorithms for single sink networks are presented.

Then mechanisms related to fault tolerance are discussed. Scheduling and tree formation

for multiple sinks networks is presented next. It is followed by discussion of Research

Gap.

2.1 Classification of Scheduling Algorithms

In Figure 2.1, classification of scheduling algorithms is given. The scheduling algorithms

are categorized based on the type of convergecast addressed by them. Following are three

categories: (i) Algorithms addressing aggregated convergecast (ii) Algorithms addressing

raw convergecast (iii) Algorithms which can be adapted for use with any of the two types

of convergecast i.e. General Algorithms.

Algorithms addressing aggregated convergecast assign single transmission slot to every

node. As mentioned in [21], slot assignment is preferred to be bottom to top i.e. from

leaf to root. That is, every parent node is assigned higher time slot than children. In

aggregated convergecast, parent aggregates packets coming from children with its own

packet and sends out a single packet. If time slot assigned to the parent is lower than

children, parent can forward the aggregated packet only in next TDMA cycle. But if

parent is assigned higher time slot, aggregated packet can be forwarded in the same

cycle. Thus packet latency can be controlled by bottom-top slot assignment.

11

Raw convergecast requires assignment of multiple slots to non-leaf nodes. In raw

convergecast, every non-leaf node forwards all packets of its children. Thus every non-

leaf node needs more than one slot. In contrast to raw convergecast, slot assignment may

proceed in top to bottom manner. Parent node need not wait for children to send their

packets. Parent may send its own packet early. Packets coming from children may be

forwarded as and when they arrive. Thus packet generated by parent is not unnecessarily

delayed.

Algorithms categorized under General category do not address any specific type of

convergecast. Even most of them are not designed for tree based networks. But they

are targeted towards other issues like reducing control overhead of slots selection, use of

multiple channels for better slot reuse etc.. The scheduling should take place in bottom-

up manner in aggregated convergecast. In raw convergecast, scheduling should be done

in top-down fashion. The methods categorized as General methods are not tuned to any

specific convergecast. But they can be changed to work with any of the two types of

convergecasts.

Figure 2.1: Classification of Distributed Scheduling Algorithms

2.1.1 General Approaches

In [28], DRAND (Distributed RANDomized Algorithm) is proposed. Every node selects

a time slot using three messages namely REQUEST, GRANT and RELEASE. First,

node broadcasts REQUEST message. Upon receiving REQUEST message, its neighbors

12

respond with GRANT message. The GRANT message sent by a node contains its iden-

tifier and list of slots used in its neighborhood. Thus the given node receiving GRANT

message can prepare a list of slots already occupied by its two hop neighbors. Based on

this list, it selects the lowest slot not used by any of the two hop neighbors. To inform

its choice of slot, the given node broadcasts a message termed as RELEASE message.

The core idea of DD-TDMA(Deterministic Distributed TDMA) proposed in [31] is

to save the energy consumed due to frequent on/off switching. Scheduling algorithm is

proposed such that the gap between the transmission and reception slots of a node is

minimized. As the gap is very small, node does not go to sleep state between reception

and transmission slot. But it remains in idle listening state. This results in energy savings.

It is also shown that DD-TDMA results in smaller schedule length than DRAND. It also

results in smaller running time and smaller control message overhead.

Distributed protocols for channel and slot allocation are presented in [30]. Two differ-

ent approaches of channel allocation namely Receiver Based Channel Assignment (RBCA)

and Link Based Channel Assignment (LBCA) are suggested. Both the approaches are

based on idea of conflict graph. In the conflict graph, interfering vertices are connected by

an edge. In RBCA, interfering vertices are receiver nodes. But they are senders in LBCA.

The interfering nodes are assigned different channels. The use of multiple channels results

in smaller schedule length.

All the distributed algorithms require control message exchange between neighbors for

collision-free schedule formation. These control messages are an extra overhead. They

also result in extra energy consumption. To reduce the control overhead, a protocol named

as GLASS (Grid based LAtin Square Scheduling) in proposed in [29]. The description of

the entire protocol would be too lengthy. So, only main objective is covered here.

2.1.2 Aggregated Convergecast

In [24], bottom-up scheduling algorithm for IEEE 802.15.4e [47] standard is proposed.

Originally, 802.15.4 [47] does not include provision of time-slotted transmission. The

IEEE 802.15.4e recommends use of Time-Slotted Channel Hopping (TSCH) i.e. use of

slots and multiple frequencies. But it does not define how the slots should be assigned to

nodes. A scheduling algorithm is proposed for the same in [24]. It is assumed that tree

13

is formed using RPL[46] algorithm. At the end of tree formation process, every node is

assigned a location based ID of following format: (x1,x2,....,xh). Here h is height of tree.

If given node is at level l, the value of xl is position assigned by parent to given node.

For i > l, xi is 0. When i < l, xi contains positions of ancestor nodes of given node.

Scheduling takes place after tree is formed. Every node selects its time-slot on its own.

The time slot selection is implemented as a function of ID of the node. Conflicting nodes

select difference frequencies to avoid collisions.

In [19], two different algorithms are proposed. One is for tree formation and other

is for slot selection. Tree formation works as follows. It works in top down manner.

That is, nodes nearer to sink join the tree first. From candidate parents (i.e. those

who have already joined the tree), given node chooses as parent the node with the least

interference. This idea results in better slots reuse. Slot selection also works in top-down

manner. Every node selects a slot smaller than slot of parent node. Slot selection is such

that collision during packet transfer is avoided.

Normally tree formation and scheduling are implemented as two separate algorithms.

First tree is formed and then slots are assigned. The other approach is joint scheduling

& tree formation. In joint approach, every node selects slot and parent at the same time.

Figure 2.2: Sample Node Deployment to Illustrate Joint Approach [21]

In [21], DICA (Distributed algorithm for Integrated tree Construction and data Ag-

gregation) is proposed. It uses joint approach. As mentioned in DICA, if tree is formed

first, structure of tree puts limit on the performance of scheduling algorithm. In other

words, two different trees formed over the same node deployment may result in different

14

Figure 2.3: Sequential Approach: First Tree then Schedule [21]

Figure 2.4: Joint Approach: Tree and Schedule Formation Together [21]

schedule lengths. In Figure 2.2, a sample deployment is shown. Continuous line from one

node to the other indicates that former has selected later as parent. Dashed line (in red

color) between two nodes indicate that the nodes are in radio range of each other.

In Figure 2.3 and 2.4, time slots are assigned to every node so that node can send

packet to its parent during that time-slot. Time slots are assigned considering following

points: (i) Parent is always assigned higher time-slot than children. This ensures aggre-

gation freshness. It means that parent could forward packets coming from children in

the same TDMA cycle. (ii) Collisions do not occur. That is, no node receives from more

than one nodes in the same time slot.

The trees shown in Figures 2.3 and 2.4 are built over the same deployment of nodes.

But both are different. Their schedule lengths are also different. In Figure 2.3, the highest

15

time slot is 5. Whereas in Figure 2.4, it is 4.

As mentioned earlier, the core idea behind joint scheduling & tree formation is that

every node should select slot and parent at the same time. Node should first identify

the lowest possible time slot. This time slot meets following conditions: (i) It is higher

than time-slots of children. (ii) No neighbor is receiving or overhearing in the slot. This

condition prevents collisions.

Now node prepares a list of candidate parents. The candidate parents are the neighbor

nodes which do not receive, overhear or transmit in the selected slot. If the list is empty,

node has to try for next higher slot. If list is non-empty, the candidate parent with the

least number of unscheduled neighbors should be selected as parent. If there are more

than one candidate parents with the same number of unscheduled neighbors, node ID

may be used to resolve the clash. The node with lowest ID may be selected as parent.

Thus every node will select the lowest possible time slot and the parent to whom it

can transmit in the selected slot. This would reduce overall schedule length.

We have used DICA[21] for our research work. So, steps of the same are explained

below in detail:

1. A special control packet known as HELLO packet is flooded in the network by the

sink node. The HELLO packet contains a field ‘LEVEL’. It is initialized to 0 by

sink.

2. Every node receiving HELLO packet sets its level L to LEV EL+ 1. Then it adds

1 into LEV EL field and broadcasts the HELLO again. Thus this step helps every

node to find its distance in hop count from the sink i.e. level.

3. Scheduling & parent selection proceeds in bottom-up fashion. A node at level L

selects a slot & parent only after its neighbors at level (L+ 1) have completed slot

& parent selection.

4. For the given minimum available slot TS, node prepares a candidate parent set,

candp set. The candidate parent set for slot TS is the set of neighbor nodes which

do not transmit, receive or overhear in the slot TS.

5. From candp set, one node p is found such that count of unscheduled nodes of p is

the least compared to all other nodes of candp set. The given node sets node p as

16

parent.

6. The given node broadcasts a message known as REQUEST message. The RE-

QUEST message has two fields: selected slot and name of parent.

7. Upon receiving a REQUEST message, each candidate parent of the sender send

REPLY message. The REPLY can be positive or negative. Assume that one of

candidate parent is c. If some other node has already selected same slot as given

node to transmit data to node c, the node c sends negative REPLY message to the

given node. Otherwise, positive REPLY is sent.

8. If positive REPLY comes from each & every candidate parent, SCHEDULE message

is broadcasted by the given node. The SCHEDULE message confirms slot & parent

selection. Like REQUEST message, it has two fields: selected slot and name of

parent.

9. If even a single REPLY is negative, node repeats all the steps starting from step 4.

It tries to select next higher slot.

10. When a node receives a SCHEDULE message, it broadcasts a message termed as

FORBIDDEN message. It has two fields: isparent and slot number. The isparent

is 1 if sender of FORBIDDEN is selected as parent. Otherwise, it is 0. The slot

number is the slot in which it is going to receive or overhear. Through FORBIDDEN

message, neighbors are informed that the sender of FORBIDDEN message is going

to receive/overhear a packet in the specified slot.

In Figure 2.5 slot & parent assignment as done by DICA [21] is illustrated. Scheduling

and parent selection starts with leaf nodes. At last, one hop neighbors of sink are sched-

uled. Continuous edge between two nodes indicate child-parent relationship. A dashed

edge (in red color) between two nodes indicate that they are in interference range of each

other.

In [20] also, a joint scheduling & parent selection algorithm is proposed. It is termed

as MOSS (Many to One Sensors to Sink). Unlike DICA[21], MOSS proposes top-down

approach for scheduling & tree formation. Given node may have multiple candidate par-

ents. It selects as parent the node which is at smallest distance form it. Thus transmission

power can be saved.

17

Figure 2.5: Illustraion of Bottomp-Up Scheduling and Tree Formation [21]

Paper Approach Parent selection criteria
Distributed Wakeup Scheduling [19] Sequential Interference
MOSS [20] Joint (top-down) Distance from given node
DICA [21] Joint (bottom-up) No. of unscheduled neighbors

Table 2.1: Summary of Aggregation Convergecast Scheduling Algorithms

The DICA[21] is extended in [22] and [23]. In [22], DICA is extended such that more

than one parents are selected by each node. Whereas in [23], joint scheduling & tree

formation using multiple paths and multiple channels is done. The use of more than

one parents (i.e. paths) ensures fault tolerance and load balancing. The use of multiple

channels results in smaller schedule length compared to single channel scheduling.

Discussion

In Table 2.1, different approaches of aggregation convergecast scheduling are summarized

with key features. The approach of DICA[21] is more appropriate than the other two

algorithms. Following are the reasons: (1) In DICA, node selects such a parent from its

neighbors to whom it could transmit in the smallest possible time slot. The parent may

be at the same level as the given node, one hop near to sink than given node or may

be one hop far from the sink than the given node. In the other two approaches, parent

must be one hop near to sink than the given node. As DICA is focused on selecting any

neighbor as parent which can receive in the smallest selected slot, it is likely to result in the

smallest schedule length compared to the other two algorithms. (2) Distributed scheduling

18

algorithm proposed in [19] uses sequential approach. As explained earlier, joint approach

is better than sequential approach. The MOSS [20] is based on joint approach. But it

works in top-down manner. The top-down approach is not suitable for heterogeneous

networks. In heterogeneous networks, all incoming packets need not be aggregated with

given node’s packet. Thus multiple packets can come out from given node. To identify

the total count of outgoing packets and type of each outgoing packet, node must know

the count of incoming packets and type of each incoming packet. This is possible only if

nodes are scheduled from leaf to sink i.e. bottom to top. Thus in heterogeneous networks,

bottom-up scheduling is more appropriate compared to top-down scheduling.

Figure 2.6: Illustration of Difference between Homogeneous and Heterogeneous Networks

We could not find any distributed scheduling algorithm designed specially for hetero-

geneous networks. Scheduling & parent selection should be done differently in heteroge-

neous networks than homogeneous networks.

In Figure 2.6, homogeneous and heterogeneous networks are presented. In homoge-

neous network, all the nodes are of same type. But in heterogeneous networks, different

types of nodes are present. Homogeneous network has all temperature sensors (denoted

by T). But heterogeneous network has pressure sensors (denoted by P) and temperature

sensors.

In homogeneous network, perfect aggregation is possible at every node. For example,

19

in Figure 2.6, the temperature sensor in the middle receives two temperature packets. It

will aggregate those packets with its own packet and will send out only one packet. But

perfect aggregation is not possible at every node in heterogeneous network. As shown in

Figure 2.6, the temperature sensor in the middle receives one temperature packet and one

pressure packet. It can not aggregate pressure packet with its own temperature packet.

So, it has to send out two packets: one temperature packet and the other is pressure

packet. As shown in the figure, node may send each outgoing packet through a different

parent node to maximize aggregation. The temperature packet can be forwarded to the

temperature sensor. The pressure packet can be forwarded to the pressure sensor. Thus

multiple pairs of slots and parents are required.

We consider that a joint scheduling & parent selection algorithm for heterogeneous

networks may be designed based on the idea mentioned above. The objective is to

maximize aggregation.

2.1.3 Raw Convergecast

In [25], a protocol known as FlexiTP (Flexible TDMA Protocol) is proposed. The protocol

addresses three aspects: parent selection, slot selection and topology maintenance. First

phase is tree formation (i.e. parent selection). The scheduling (i.e. slot selection) takes

place second. At the beginning of tree formation, sink generates a special packet termed

as ‘token’. It sends the token to the neighbor whose ID is the smallest among the other

neighbors. That neighbor becomes child of the sink. Then that node broadcasts a special

beacon message. The nodes which receive beacon message become children of the sending

node. Now the sending node generates token and gives to the child with the smallest ID.

Again that child broadcasts beacon message. This is how parent-child relationship is

established and tree is formed. At the end, the token reaches back to sink. Now next

phase i.e. slot selection begins.

During slot assignment also token is used in the same way as tree formation. Slot

selection is performed by a node if it has the token. After selecting a slot, node sends the

ID of selected slot to one hop and two hop neighbors. This helps the neighboring nodes

to select slots such that data transmission does not create collisions. As scheduling takes

place in top-down manner, nodes may have to perform slot selection more than once.

20

Whenever a node at level l selects a slot, all its ancestors from level (l − 1) till the sink

must select a slot to forward the packet coming from the given node.

In [26], collaboration based distributed scheduling is presented. Every node knows

the number of packets received from children and number of packets generated by itself.

Accordingly it calculates number of required transmission slots. The given node selects

a sequence of slots based on its knowledge of slots used by neighbors. It broadcasts a

packet known as REQUEST packet. The REQUEST packet contains the list of selected

slots. The REQUEST packet is received by all the neighbors of the given node. If all

the selected slots are unique i.e. are not going to create interference at neighbors, all the

neighbors send GRANT message back to the given node. If any of the selected slot is

going to create interference at any of the neighbors, the concerned neighbor does not send

GRANT message. If GRANT is received from all the neighbors, the given node confirms

the slots by broadcasting ACK message. Else it selects different slots and repeats the

process.

In [27], a joint channel and slot assignment is proposed. Every node is assigned

multiple channels and slots. As more than one channels are assigned to node, node can

transmit using lowest possible time slot. The slot selection process is similar to the one

used in previously described algorithms. That is, node selects a slot based on the slots

used in its two hop neighborhood. In the beginning, sink assigns slots and channels to

every node. For this, sink must know traffic requirement and complete topology. As data

generation rate (i.e. traffic requirement) may change with time, nodes themselves select

extra slots if required. Thus initial slot and channel assignment is done centrally but

later slot adjustment is done locally.

2.2 Fault Tolerance and Adapting to Workload Vari-

ation

Sensors are battery operated devices. They loose energy with time due to transmission

and reception of packets. It is possible that some nodes become non-functional because

energy is completely drained. If parent of given node dies, the node has to select new

parent. Now not only the given node but also all the nodes in the sub-tree rooted at the

21

given node transmit the packets via new parent. As a result, now that parent node has to

forward more number of packets. So, it has to select additional slots. This situation can

happen in raw convergecast or in aggregated convergecast in heterogeneous networks.

Often new nodes are added in the network after initial deployment to ensure full cov-

erage and connectivity. As newly added nodes join the tree, more packets pass through

the tree. As a result, additional slots need to be selected. Many applications like envi-

ronmental monitoring require the sensors to continuously sense the environment. Data

is transmitted at some fixed time period. But if some important event occurs, data need

to be transmitted at an increased frequency. Thus more slots are required.

From above paragraphs, it can be concluded that scheduling & parent selection is not

just one time process. When some nodes fail or new nodes are added or traffic requirement

changes, slot & parent selection should be executed. In other words, tree repairing and

schedule adjustment is done. It is required that tree repairing and schedule adjustment

should be done quickly so that data collection operation does not suffer. Also the control

overhead of maintenance should be as much low as possible.

In [40], an approach to handle dynamic traffic pattern is proposed. In many applica-

tions, nodes continuously transmit data i.e. at fixed frequency. So, traffic pattern remains

static. But in some applications, it is not required to send every reading. For example,

nodes needs to transmit when some event has taken place or there is a significant dif-

ference between the readings sent previously and the readings sensed currently. In such

cases, traffic is not generated at a constant rate. But slots are assigned assuming that

nodes always have data to send. If a node does not transmit in the allocated slot, its

parent keeps waiting and spends energy in unnecessarily sensing the channel.

The work done in [40] addresses the above problem. It is suggested that a parent

should be scheduled after all its children. As a result, parent will transmit its packet only

after all its children have sent the packets. Every node is assigned a series of time slots

to transmit its own data and data coming from its children. The time slots assigned to a

node are such that first it would forward packets coming from children and then it would

forward its own packets. It is possible that children of the given node have no data to

transmit. In that case, node will transmit its own data in the initial time slots and then

would go to sleep. The parent of the given node when receives data belonging to the given

node in initial slots would understand that the node does not have more data to send.

22

So, the parent also goes to sleep once the given node finishes the transmission. Thus the

parent node does not waste its energy in waiting for the child to send the packets.

In [41], an improvement over the approach suggested in [40] is presented. The algo-

rithm is named as DETA (Delay Efficient Traffic Adaptive) algorithm. In [40], packets

generated by a node face longer delay as the node is scheduled after its parents. The

DETA algorithm aims to reduce this delay. It also results in smaller schedule length

compared to [40]. The details are not presented here but only main objective is men-

tioned.

In [42], an idea to quickly recover from node failure is presented. The idea is that

every node should not select one pair of slot and parent. Instead, it should find redundant

pairs of slot and parent. Whenever current parent fails, node should start transmitting

via alternate parent in the respective slot. The benefit is that node need not perform slot

and parent selection at the time of parent failure. Alternate slot-parent pair is selected

at the time of scheduling & parent selection itself. Thus tree repairing and schedule

maintenance is done faster. The demerit of this approach is increase in number of slots

required to schedule the tree. As a result, schedule length also increases. As redundant

slots are reserved by nodes, more number of slots are needed to schedule the tree.

In [43] also similar idea is presented. The authors of [43] are not focused on schedul-

ing. It is suggested in [43] that during tree formation itself alternate parent should be

identified. When actual parent dies, node should automatically switch to the alternate

parent.

In [44], an improvement over the scheme suggested in [43] is proposed. In [43], tree

repairing is pro-active in nature. It means that before the failure of current parent,

alternate parent is already found. This idea does not work well when multiple nodes

fail. For example, both current parent and alternate parent fail. To quickly recover from

failure of multiple nodes, notion of redundant nodes is proposed. It is proposed that in

a network, some nodes are active and others are redundant. The active and redundant

both the types of nodes are part of the tree. The data sensing is done only by the active

nodes. The deployment is such that around each active node few redundant nodes are

present. Whenever parent of an active node fails, that active node starts sending data

through the nearby redundant node. As redundant node is already connected to the tree,

data collection operation does not suffer due to failure of the parent node.

23

In FlexiTP([25]) also fault tolerance is addressed. Four different types of slots are

proposed: FTS (Fault Tolerance Slots), MFS(Multi Function Slots), Transmission and

Reception Slots. To recover from faults, FTS are used. The MFS are used by a node to

synchronize time with the children and share scheduling information with the children.

If a node does not receive any packet from its parent for two back to back Multi Function

Slots, it is an indication that parent is failed. So, the given node sends a beacon message

during next Fault Tolerant Slot. The beacon is heard by all the neighbors. They all will

send an ACK back to the given node. The given node selects as parent the neighbor

which is nearest to the sink. The given node intimates the new parent. The newly

selected parent node assigns a time slot to the given node. It also selects a time slot for

itself to forward the packets coming from the given node. As such all the nodes in the

path from the given node to the sink have to select additional time-slots. Every node

informs its one and two hop neighbors about newly selected slots. This is required to

form collision-free schedule.

2.3 Scheduling and Tree Formation in Multiple Sinks

Networks

When large number of nodes are present in the network, it is desirable to deploy more

than one sinks. If only one sink is present, all the nodes would send packets to that sink

only. In other words, all the nodes would join the same tree i.e. rooted at the only sink.

As more and more nodes are deployed in the network, diameter of the tree increases.

In other words, tree height increases. So distance of farthest nodes from the sink also

increases. Thus average latency faced by packets also goes up. Moreover, as number

of nodes increases and tree height increases, number of slots used to schedule the tree

increases. When raw convergecast is used, every node forwards all the packets coming

from the children. So, increase in tree size results in more workload on nodes one hop

away from sink. These nodes have to forward maximum number of packets. They are

likely to quickly loose energy and die. This phenomenon is termed as funneling effect

([1]).

When aggregated convergecast is used, every node aggregates all incoming packets

24

with its own packet. So, only one packet comes out of every node. Increase in tree size

does not put extra burden on one hop neighbors of the sink. But still schedule length

and packet latency increase.

If multiple sinks are deployed, workload can be distributed between sinks. If two sinks

are deployed, some nodes would join the tree rooted at first sink and the others may join

the tree rooted at second sink. As a result, size of an individual tree is reduced. Thus

time required to deliver packets to root is also reduced. Other advantage of multiple sinks

is fault tolerance. If one sinks fails, nodes may start sending data to different sink.

It is desirable that workload of sinks (i.e. trees) remain balanced. In other words,

equal number of packets should pass through the trees rooted at sinks. If more packets

pass through a tree, energy of nodes in that tree would be consumed more. The nodes

may quickly die. Due to funneling effect [1], direct neighbors of overloaded sink may die

and rest all nodes of that tree may be disconnected from sink. Also schedule lengths of

different trees may not be balanced if trees are of different size.

In following paragraphs, some papers addressing techniques to avoid funneling effect

are discussed.

An algorithm for load balancing for target tracking application is proposed in [32].

It uses fuzzy logic for load balancing. Whenever a target is detected, sensors send video

of the target towards sink. As multiple sinks are present, sensor sends the packet to the

sink towards whom traffic is the least.

In [32], fuzzy logic-based load balanced routing is proposed for target tracking in

video sensor networks. Whenever a sensor detects a target, sink selection is done to send

corresponding video packets. The selection depends on traffic density in the direction of

sink.

In [33], it is proposed that for each packet sender node should find forward factor for

each of the neighbors. The forward factor of a node is defined as the ratio of residual

energy and distance from sink. The sender node forwards its packet to the neighbor with

the highest forward factor. As residual energy keeps changing, different packets are likely

to be sent through different nodes. The nodes with very less energy are not likely to be

selected as forwarders. This method indirectly distributes load across sinks as different

neighbors are likely to be connected to different sinks.

In [34], Load Balanced Routing (LBR) is proposed. For each sink, every node finds

25

the ratio r of number of neighbor nodes of the sink and distance in hop count from given

node to the sink. The given node sends the packet towards the sink with the highest ratio

r. The given node may have multiple neighbors through which the selected sink can be

reached. For each packet different neighbor is selected probabilistically.

In [35] and [36], it is proposed to change the path towards sink when energy of nodes in

the current path goes beyond specific threshold. In [37], the concept of electrical potential

field is used to perform load balancing. When a sink finds itself overloaded (i.e. receives

too many packets), it informs the nodes in its tree to transmit data to some other sink.

In [38], SMTLB (Spanning Multi Tree Load Balanced routing) algorithm is proposed.

The aim of the algorithm is to balance the workload across the subtrees of the given

tree. Each one hop neighbor of a sink becomes root of a subtree. The tree is formed

in top-down fashion. Different nodes may generate packets at different rate. Nodes are

gradually added in the subtrees such that total number of packets passing through the

subtrees remain almost same.

In [39],tree formation and scheduling are considered as two different problems. It is

assumed that more than one sinks are present. Two different methods of tree formation

are proposed: (i) In the first method, concept of voronoi diagrams is used. Every sink

becomes root of exactly one voronoi region. In a given voronoi region, exactly one tree

is present. (ii) In the second method, every node is connected to the tree rooted at the

sink at smallest hop distance from the given node.

Discussion

In aggregated convergecast, funneling effect [1] is not likely to happen because every node

sends out only one packet. So every direct neighbor of sink also sends out one packet.

Following paragraphs illustrate issues in aggregated convergecast when multiple sinks are

deployed.

If nodes are uniformly deployed, every node joining the nearest sink would auto-

matically result in schedule length balancing. Some times nodes may not be uniformly

deployed. More number of nodes may be deployed in an area where finer observations

are needed. But in other areas where precise readings are not needed, node deployment

may be sparse. Thus some trees would be dense and others would be sparse. The dense

trees would need larger schedule than the sparse ones. For example, two trees T1 and

26

T2 are formed with schedule lengths SH1 and SH2 respectively. Every node in Ti will

get a chance to transmit its packet after every SHi slots. If schedules are not balanced,

nodes in one tree would wait for long time to get their turn to transmit. Thus packet

latency would be high. On the other hand, in a tree with small schedule length, latency

will be low. If schedule lengths are balanced, nodes of both the trees would suffer equal

packet latency. Overall schedule length (SH) of the network would be max(SH1, SH2).

Thus balancing the schedule lengths of individual trees would also reduce overall schedule

length.

The other cause of difference in schedule lengths of trees is different levels of hetero-

geneity in different regions of the network. For example, in one region, two types of nodes

are present. In the other region, six types of nodes are present. The region with two types

of nodes is likely to result in better aggregation compared to the other region. As a result,

the tree passing through the region with two types of nodes has smaller schedule length

than the other tree passing through region having six types of nodes.

To the best of our knowledge, none of the papers available in literature focus on sched-

ule length balancing for aggregated convergecast in multi-sink sensor networks. Most of

the papers in area of load balancing try to reduce funneling effect [1] or distribute work-

load across one hop nodes of sender. In addition, scheduling is not attempted by most

of the papers. There are two references close to our work. They are [38] and [39]. In

[38], aim is to balance load across sub-trees. When nodes are not distributed uniformly,

load may be balanced across sub-trees present in dense region. These sub-trees may be

part of a single tree. When tree present in dense region is scheduled, its schedule length

is likely to be more than that of tree formed from nodes present in sparse region. Thus

this work is not likely to result in schedule length balancing of trees. In addition, it is a

centralized algorithm and does not attempt scheduling. As mentioned earlier, centralized

algorithms are less desirable compared to distributed algorithms. In [39], it is proposed

to divide the entire region into voronoi sub-regions with respect to sinks. When nodes are

not distributed in uniform manner, some voronoi regions have more number of nodes and

others have less number of nodes. Thus the resulting trees and corresponding schedules

are likely to be unbalanced.

We plan to design a distributed algorithm to balance schedule lengths of trees in

multi-sink sensor networks. The reason of imbalance in schedule length can either be

27

uneven distribution of nodes or difference in heterogeneity between different regions of

the network.

2.4 Research Gap

From previous discussions it is found that following are two research gaps:

1. Present aggregation convergecast scheduling algorithms assume presence of homo-

geneous network. Existing algorithms should be modified to take heterogeneity into

account with the objective of maximizing aggregation.

2. Many algorithms for load balancing in multiple sinks sensor networks are proposed.

But most of them try to eliminate funneling effect. There is no algorithm present

in literature addressing balancing of schedule lengths of trees rooted at different

sinks.

Our focus is to design a distributed algorithm which runs in multiple sinks networks

with non-uniform node distribution and heterogeneous nodes. The algorithm should help

every node to take a decision about which sink (i.e. tree) to join. The objective of the

algorithm is that schedule lengths of trees should be balanced and overall schedule length

should be reduced.

2.5 Summary

In this chapter, literature review is presented. Scheduling algorithms are categorized

based on type of convergecast addressed. Algorithms designed specifically for multiple

sinks networks are also explained. As fault tolerance is an important aspect of tree

formation and scheduling, important methods for the same are also discussed. Based on

reviewed literature, some open issues are identified. They are presented in section on

Research Gap.

28

Chapter 3

Problem Definition

Multiple trees are formed in multi-sink networks. When node distribution is not uniform,

schedule lengths of trees are different. Some method is needed to balance the schedule

lengths of trees. This in turn should minimize the overall schedule length. The same issue

is taken as the problem to be solved for PhD work. In this chapter, problem is formally

defined along with motivation, assumptions, objectives and description of the problem.

To keep the chapter complete, explanation given in earlier chapters is repeated at some

places in current chapter.

3.1 Motivation

As explained earlier, networks are not always homogeneous. Many applications require

heterogeneous networks. For example, sensors are deployed on a bridge to monitor several

parameters like vibration, tilt, cracks, shocks and deformation etc.. A single type of

sensor may not be able to sense all the parameters. So different types of sensors need to

be deployed.

Parent selection in heterogeneous networks should be different. A node may have

number of candidate parents. But it should send the packet to the node where packet

can be aggregated. For example, a temperature sensor should select a temperature sensor

as parent so that its temperature reading can be aggregated with temperature reading of

parent. As a result, only one packet would come out of parent. But if pressure sensor is

selected as parent, pressure and temperature readings can not be aggregated. So, parent

sensor has to send out two packets: (i) The first packet would have pressure reading (ii)

29

The second packet would have temperature reading received from child.

In a single sink network, the size of the tree will grow as the number of nodes increases.

All the nodes would join the same tree. Only one sink will receive packets from all the

nodes. This will also increase workload on neighbors of sink. Funneling effect [1] may

take place. In addition, schedule length will also increase as the size of tree increases

because schedule length depends on density and height of the tree.

Often it is desirable to deploy multiple sinks in the network. The benefit is that

multiple trees would be formed. Unlike single sink networks, all the nodes need not join

the same tree. As a result, workload would be distributed across the sinks. At the same

time, schedule length of every tree will remain reasonable because size of the tree would

be reduced.

When multiple trees are formed, a node can join either only one tree or more than one

trees. Joining multiple trees means having multiple parents and multiple transmission

slots. In short, multiple pairs of slots and parents are selected. If a node is member

of a single tree, it requires only one pair of slot and parent. Making a node member

of more than one trees requires more work at the time of scheduling because multiple

slot/parent pairs are assigned. Also the schedule length will increase because more slots

are consumed. Thus packets will face more latency. Assigning multiple parents is really

useful in case of parent failure because node can automatically switch to new parent

for data transfer. But in distributed algorithms, repairing is done locally. Whenever

parent dies, node quickly selects new parent on its own. In addition, schedule length

remains reasonable if node joins only one tree because extra slots are not assigned. So it

is preferable that every node should join exactly one tree.

Node distribution across the entire network may not be uniform. This means that

node density is different in different regions of the network. Density is very high in some

regions, whereas very low in other regions. In practice when finer observation is required

at some places, more sensors are deployed. But at other places less number of sensors are

deployed. This results in unequal density.

When multiple sinks are deployed, non-uniform node distribution may result in un-

balanced schedule lengths of trees. The tree spanning dense region of network will result

in high schedule length whereas the tree spanning sparse region will result in low sched-

ule length. If schedule length of a tree is SH, it means every node will get its turn to

30

transmit after SH time-slots. So larger schedule length means nodes have to wait longer

to transmit. Packets need to be buffered for longer time at the sending node. This in

turn would increase latency.

In heterogeneous networks, all types of sensors may not be present everywhere. For

example, in some region only two types of sensors need to be present. In the other region

of the same network, six types of sensors are required. In a region of two types of sensors,

aggregation would be better compared to the other region. As a result, less number of

packets are transmitted in the region having two types of sensors compared to the region

having six types of sensors. Thus tree spanning the region with two types of sensors is

likely to result in smaller schedule length than the tree spanning through region of six

types of sensors.

Thus in a multi-sink network, the schedule lengths of trees may not always be bal-

anced. The reason is either non-uniform node distribution or different levels of hetero-

geneity across the trees. It is desirable that schedule lengths are balanced. If schedule

lengths are not balanced, nodes of one tree will suffer high latency and the others will

have low latency.

Our aim is to design a distributed schedule length balancing algorithm for multi-sink

heterogeneous networks.

3.2 Problem Statement

To design a distributed algorithm to balance schedule lengths of sink-rooted trees in

multi-sink heterogeneous sensor networks.

3.3 Assumptions

1. One or more sinks are deployed.

2. More than one type of nodes may be deployed in the network.

3. Node distribution is not uniform.

4. Every sink is root of exactly one tree.

31

5. Every node joins exactly one tree. In other words, trees are disjoint.

6. Every packet requires one time-slot. Every node is sensing the environment for

some time and sending its reading as part of a packet. So time-slot size is such

that entire packet is sent. Our work is extensible for the case when a node requires

multiple time-slots to send a single packet.

3.4 Objectives

Let us assume that total number of sensor nodes in n and number of sinks is N . So N

trees are formed : T1,T2,....,TN . Their schedule lengths are denoted as SH1,SH2,....,SHN

respectively. The objectives of proposed solution are as follows:

1. Overall schedule length must be minimized. Overall schedule length SH of the

network is defined as follows:

SH = max(SHi), i = 1, 2, ..., N (3.1)

2. Difference between schedule lengths of trees should be minimal. It is denoted as

SHdiff . It is defined as follows:

SHdiff =
max(SHi)−min(SHi)

max(SHi)
∗ 100%, i = 1, 2, ..., N (3.2)

This would balance the schedule lengths of trees. As a result, TDMA cycle

would be completed almost at equal time in all the trees. Finally overall schedule

length would be minimized.

3. Minimize Control Overhead (CO). Control overhead at a node i is count of control

packets sent by that node. The control messages are required for achieving schedule

length balancing and actual scheduling & tree formation. For longer lifetime of

sensor nodes, energy consumption due to control messages should be kept minimal.

Let us denote control overhead at node i by COi. Total control overhead CO

is defined as follows:

32

CO =
n∑

i=1

COi, i = 1, 2, 3,, n (3.3)

4. Minimize Average Energy Consumption during Control Phase (EC). The control

phase is the time duration from network setup to the end of scheduling and parent

selection algorithm. Energy consumption during control interval is directly propor-

tional to control overhead.

Let initial energy of every node be Einit. The residual energy in node i at the

end of control phase be denoted as Ecres
i . Energy consumption during control phase

at node i be denoted as EC
i . It is defined as follows:

EC
i = Einit − Ecres

i , i = 1, 2, 3,, n (3.4)

Average energy consumption (EC) is defined as follows:

EC =

∑n
i=1E

C
i

n
, i = 1, 2, 3,, n (3.5)

5. Minimize Average Energy Consumption during Data Phase (ED). The data phase

is the time duration during which nodes send data to sink. Data Phase begins after

end of Control Phase. Energy consumption during data phase is proportional to

number of data packets sent and received by node.

The residual energy in node i at the end of data phase be denoted as Edres
i .

Energy consumption during data phase at node i be denoted as ED
i . It is defined

as follows:

ED
i = Ecres

i − Edres
i , i = 1, 2, 3,, n (3.6)

Average energy consumption (ED) is defined as follows:

ED =

∑n
i=1E

D
i

n
, i = 1, 2, 3,, n (3.7)

33

3.5 Description

To solve above problem, we have attempted following two sub-problems. Their solutions

are combined to solve entire problem.

1. Joint scheduling & tree formation in a single sink heterogeneous network.

2. Schedule length balancing in multi-sink homogeneous network.

At first, we attempted joint scheduling & tree formation for a single link network

with heterogeneous nodes. We have suggested a distributed scheduling & tree formation

algorithm for single sink network with heterogeneous nodes. It is named as AAJST

(Attribute Aware Joint Scheduling & Tree formation). The objective is to minimize

schedule length by maximizing aggregation. The details are given in Chapter 4.

Then second sub-problem is attempted. It is assumed that multiple sinks are deployed

and node distribution is not uniform across the entire region. We have suggested a

distributed algorithm which allows every node to decide which sink (i.e. tree) to join

such that when actual scheduling and tree formation takes place, the schedule lengths

are balanced. The algorithm is named as SLBMHM (Schedule Length Balancing for

Multi-sink HoMogeneous networks). The details are given in Chapter 5.

Lastly ideas of scheduling in single sink heterogeneous networks and schedule length

balancing in multi-sink homogeneous networks are combined. The resulting algorithm

is capable to achieve schedule length balancing in multi-sink heterogeneous networks

and also maximize aggregation. The algorithm is named as SLBMHT (Schedule Length

Balancing for Multi-sink HeTerogeneous networks). The details are given in Chapter 6.

3.6 Summary

In this chapter, main problem is formally defined. Assumptions and Objectives of pro-

posed solution are explained. Description explaining break-up of main problem into sub-

problems is also presented. The Scheduling & Tree formation for heterogeneous networks

is explained in the next chapter.

34

Chapter 4

Attribute Aware Joint Scheduling

and Tree formation (AAJST)

Algorithm

The first sub-problem of our main problem is scheduling & tree formation in single-sink

heterogeneous networks. We have suggested an algorithm named as AAJST (Attribute

Aware Joist Scheduling and Tree Formation) for slot and parent selection in case of het-

erogeneous networks. In heterogeneous networks, different types of packets are received

by a node. Our approach is to select different parent for every outgoing packet based on

the type of the packet. This chapter presents design of proposed algorithm along with

simulation results.

4.1 Motivation

Sensor networks can be homogeneous or heterogeneous. When application requirement is

such that only a single physical quantity is to be measured, network is homogeneous. For

example, temperature of some place is to be observed. Hence temperature sensors are

deployed in that place. But often in many applications, multiple physical quantities are

to be observed. For example, on a bridge sensors are often deployed to observe pressure,

tilt, shocks, deformation and other things. In this case, sensors of different types need to

be deployed. Nowadays single device is capable of sensing multiple quantities. But still

35

all quantities can not be sensed by a single device. So heterogeneous network is still a

valid assumption.

Scheduling and Tree formation in heterogeneous network is different than in homo-

geneous network. In Figure 4.1, homogeneous network and heterogeneous networks are

shown. Nodes with labels “T” are temperature sensors and label “P” are pressure sensors.

Figure 4.1: Illustration of Difference between Homogeneous and Heterogeneous Networks

In every tree-based network, non-leaf nodes receive one or more packets from children.

If network is homogeneous, every node can aggregate all incoming packets with its own

packet. As a result, only one packet goes out of the node. In the figure shown above,

homogeneous network has all temperature sensors. Every node sends and receives packets

of type temperature. At a given node, all temperature packets may be aggregated.

Aggregation function may be sum, average, median etc.. Thus only one packet goes out.

As a result, every node has to select one parent and one time slot.

If network is heterogeneous, different types of nodes are present in the network. As

shown in Figure 4.1, heterogeneous network has temperature and pressure sensors present.

It is possible that children of given node are of different types. Thus a node may receive

different types of packets. In Figure 4.1, the temperature sensor in the middle has two

children: one temperature sensor and one pressure sensor. It receives two packets: one

temperature packet and one pressure packet. Temperature packet can be aggregated

36

at temperature sensor. But pressure packet cannot. Thus temperature sensor has to

send out two packets: one temperature packet (result of aggregation of two temperature

packets) and one pressure packet (received from pressure sensor). To fix the length of

slot, we assume that every slot carries one packet. Thus node will require two time-slots

to transmit these two packets.

Temperature node can send both the packets to a single parent. If both packets are

sent to temperature sensor, temperature packet is aggregated but pressure packet is not.

If both the packets are sent to pressure sensor, situation is reverse. One alternate is to

send each packets to a different parent, as shown in Figure 4.1. Temperature packet

should be sent via temperature sensor and pressure packet should be sent via pressure

packet. Thus every packet is aggregated at parent node. If aggregation is improved,

average number of packets coming out per node decreases. This results in reduction in

number of time slots required and also energy consumption.

Thus it is observed that parent selection in heterogeneous networks is different than

homogeneous networks. Nodes need to select multiple parents. Parent selection should be

such that packet gets aggregated as early as possible. If aggregation is improved, nodes

have to transmit less number of packets. As a result, count of total transmission slots is

reduced. Finally schedule length is also reduced. In addition, energy consumption is also

reduced. At every node, energy is consumed due to following two reasons: (i) Control

packets exchanged with neighbors during slot and parent selection. (ii) Transmission of

data packets. Proper parent selection reduces energy consumption during both control

phase and data transmission phase. As node has to select less number of slots, less control

messages are required. As less number of data packets are to be sent, energy consumption

during data phase is reduced.

As explained in Chapter 2, slot and parent selection (i.e. tree formation) should take

place jointly. If tree is formed first and then slot assignment is done, tree structure

controls the performance of scheduling algorithm. But if schedule and tree are formed

together, scheduling algorithm is not dependent on structure of tree. In other words,

every node may check if there is any suitable parent in the lowest available time-slot. In

stead of selecting parent first and then finding time-slot, it is better to select slot and

parent together such that node can transmit in the lowest possible slot. This approach

reduces schedule length of the tree.

37

Joint approach is applicable to heterogeneous networks also. In homogeneous net-

works, every node finds single pair of slot and parent whereas multiple slot/parent pairs

are required for every node in heterogeneous networks.

Problem of scheduling & parent selection in heterogeneous networks is formally defined

in next sub-section. Subsequent sub-sections present idea of the proposed algorithm,

formal description of the proposed algorithm, correctness proofs and simulation results.

4.2 Problem Statement

To design a distributed parent selection algorithm for single sink heterogeneous wireless

sensor networks.

4.2.1 Assumptions

1. Single sink is deployed.

2. Network is heterogeneous.

3. Every packet requires one time slot.

4. Aggregation convergecast is used. Two or more packets of same type can be fully

aggregated into one packet. Different packets of different types can not be aggre-

gated. They are transmitted individually.

4.2.2 Objectives

Let us denote total number of nodes in the network by n.

1. Minimize Schedule Length (SH). Schedule length is count of unique slots required

to schedule entire tree. In other words, it is the highest slot number.

2. Minimize Average Aggregation Factor. Let the no. of packets received for forward-

ing by node i be Ri and no. of packets forwarded by node i be Fi. Aggregation

factor ηi at a node i is defined as follows:

ηi =
Ri − Fi

Ri

(4.1)

38

Aggregation factor at a node i represents the fraction of received packets aggre-

gated at that node. The higher value of ni is considered better. Average aggregation

factor η is defined as follows:

η =

∑n
i=1 ηi
n

, i = 1, 2, 3,, n (4.2)

3. Minimize Control Overhead. Control Overhead (CO) is defined in equation 3.3.

4. Minimize Average Energy Consumption during Control Phase (EC). It is defined

in equation 3.5.

5. Minimize Average Energy Consumption during Data Phase (ED). It is defined in

equation 3.7.

4.3 Attribute Aware Joint Scheduling and Tree for-

mation (AAJST) for Single Sink Heterogeneous

Networks

4.3.1 AAJST Algorithm

As mentioned earlier, a joint distributed scheduling and tree formation for homogeneous

networks is presented in DICA[21]. It is modified to work with heterogeneous networks.

New proposed protocol is named as Attribute Aware Joint Scheduling & Tree formation

(AAJST).

When network is heterogeneous, different types of nodes are present in the network.

As mentioned earlier, bottom-up scheduling and parent selection is desirable to maintain

aggregation freshness in aggregated convergecast. When a node attempts to decide its

slot and parent, it has following pieces of information: (i) number of incoming packets (ii)

type of each incoming packet. Of course, node also knows the type of packet generated by

itself. Based on these, node can identify the followings: (i) number of outgoing packets

(ii) type of each outgoing packet. For each outgoing packet, node may select a different

parent such that packet would be aggregated as soon as possible. Parent selection based

on count of unscheduled neighbors (as proposed in DICA[21]) is not a suitable approach

39

Figure 4.2: Illustration of Scheduling and Tree Formation using DICA EXTENSION

Figure 4.3: Illustration of Scheduling and Tree Formation using AAJST

for heterogeneous networks. Following paragraphs explain the core idea behind parent

selection in AAJST.

In Figures 4.2 and 4.3, same network is shown. The network is heterogeneous. Two

types of sensors i.e. temperature and pressure sensors are present. Continuous line from

one node to the other indicates that former has selected later as parent. Dashed line

(in red color) between two nodes indicate that the nodes are in radio range of each

other. Figure 4.2 illustrates scheduling and parent selection without considering node

heterogeneity. DICA [21] is used for slot/parent selection. Only difference is that now

multiple slots/parent pairs are selected. We call this approach DICA EXTENSION.

Figure 4.3 illustrates scheduling and parent selection as done in AAJST.

To maintain aggregation freshness, scheduling would take place from bottom to top

40

(i.e. from leaf nodes to sink). The first step is Leveling. It is present in both AAJST

and DICA EXTENSION. Leveling is done by flooding HELLO messages in the network

by sink. Every HELLO message contains a field ‘counter’. Sink sets counter to 0 and

broadcasts the message. Every node receiving HELLO packet increments the counter and

broadcasts the message. The value of counter indicates level of the node broadcasting

HELLO message Once leveling is done, scheduling and parent selection algorithm runs.

Next few paragraphs explain slot and parent selection as done in DICA EXTENSION.

Slot/Parent selection begins from leaf nodes. Nodes 1,2 and 3 are leaf nodes. As shown

in Figure 4.2, node 1 is a temperature sensor. Node 2 and Node 3 are pressure sensors.

Node 1 would try to select slot 1 for transmission. Nodes 4 and 5 are in radio range of

1. So it would select one of them as parent. Node 4 has less number of unscheduled

neighbors than node 5. The unscheduled neighbors of node 4 are 1 and 7. But the

unscheduled neighbors of node 5 are 1, 2 and 7. Thus node 1 would select node 4 as

parent.

It is possible that node 2 would start slot selection with node 1. It would select slot

1 only. Nodes 5 and 6 are in its radio range. Node 5 has three unscheduled neighbors

(nodes 1,2 and 7). Whereas node 6 has four unscheduled neighbors (2,3,8,9). Node 2 will

select node 5 as parent because it has the least number of unscheduled neighbors. The

REQUEST packet broadcasted by node 2 would be heard by node 5 and 6. As node 5

has already received REQUEST from 1, it would send negative reply to 2. The reason is

that parent of node 1 (i.e. node 4) has less number of unscheduled neighbors than parent

of node 2 (i.e. node 5). Thus node 1 has better parent. It gets preference over node 2.

So, node 2 would wait until node 1 completes the process of slot and parent selection. It

selects slot 2 to transmit to parent node 5.

Node 3 can perform slot and parent selection in parallel with node 1. Node 3 has no

choice but to select node 6 as parent. Because it is the only one in its radio range.

Node 4 is a pressure sensor. It receives temperature packet from node 1. Node 4

selects two transmission slots i.e 2 and 3. In one slot it would send temperature packet.

In the other slot, it would send pressure packet. Node 4 has no choice except to select

node 7 as parent. Node 5 also selects node 7 as parent because it has no other choice.

It has to send out two packets, one pressure and the other temperature. It selects two

transmission slots i.e. 4 and 5. Node 6 selects node 8 as parent. As node 6 has to forward

41

two packets i.e. pressure and temperature, it selects two slots (2 and 3). Node 8 and

9 have equal number of unscheduled neighbors i.e. node 6 only. Node 8 is selected (by

node 6) as its ID is smaller.

Finally nodes 7, 8 and 9 are scheduled. Node 7 selects slots 6 and 7. Node 8 selects

slots 4 and 5. Node 9 selects slot 2. Node 9 has no child but selecting slot 1 would

create interference at node 6. So it could not transmit in slot 1. The largest slot in

entire schedule is 7. So schedule length is 7. Next few paragraphs explain slot and parent

selection as done in AAJST.

In AAJST also, scheduling and tree formation is bottom-up. First leaf nodes are

scheduled. Nodes 1, 2 and 3 are leaf nodes. They can start the process in parallel. Node

1 selects slot 1. As node 1 generates temperature packet, it selects node 5 as parent

so that its packet could be aggregated with temperature reading generated by node 1.

Eventhough node 5 has more number of unscheduled neighbors than node 4, priority is

given to node 5.

Node 3 has no choice but to select node 6 as parent. It also selects slot 1. Node 2

selects node 6 as parent eventhough it is a temperature sensor. The other choice is node

5 which is also temperature sensor. Pressure packet sent by node 2 would be aggregated

at node 6 with pressure packet sent by node 3. As shown in Figure 4.2, selecting node 5

as parent would require node 5 to use two slots.

Node 4 has no child. So it selects slot 1. It selects node 7 as parent. Node 5 is a

temperature sensor. It selects node 7 as parent. Node 5 has no other choice. Node 6

has two pressure packets coming in and itself generates temperature packet. For pressure

packet, it selects node 8 as parent because node 8 is a pressure sensor. Node 9 is selected

as parent for temperature packet.

Finally, nodes 7, 8 and 9 are scheduled. Node 7 selects slots 3 and 4. Node 8 and 9

select slot 5 and 6 respectively. The highest slot in entire schedule is 6. Thus schedule

length is 6.

From Figures 4.2 and 4.3, it is seen that AAJST is likely to result in lower schedule

length compared to DICA EXTENSION . The core idea of AAJST is to select parent

considering the type of packet to be forwarded. In contrast, DICA EXTENSION selects

the node with the least number of unscheduled neighbors as parent. It does not consider

the type of packet and type of parent.

42

Parameter Meaning
Pu Parent of node u
TSu Transmission slot of node u
TMu Highest transmission slot of children of node u
OHu Neighbors of node u overhearing in TSu

RVu Neighbors of node u receiving in TSu

TRu Neighbors of node u transmitting in TSu

candpu[TSu] Neighbors of node u which do not transmit,
receive or overhear in slot TSu

REQUEST The message broadcast by a node to inform its choice
of slot and parent to its candidate parents

REPLY Response generated by candidate parents upon receiving
REQUEST message

SCHEDULE The message broadcast by a node to confirm its choice
of slot and parent to its candidate parents

FORBIDDEN Message broadcast by a candidate parent upon reception
of SCHEDULE message

Table 4.1: Notations used in AAJST Algorithm (taken from [21])

In summary, every node should perform following steps to find a parent to forward a

packet of type t in given time slot:

1. Check if there is any neighbor of type t in neighborhood. If so, packet should be

sent to that neighbor. If no such node is found, step 2 should be executed.

2. Check if there is any node in neighborhood which is receiving packets of type t from

other nodes. If any such node is found, it should be considered as parent for packet

of type t. If no such node is found, step 3 should be executed.

3. Check if there is any node in neighborhood which has one or more nodes of type t

in its neighborhood. If any such node is found, it should be considered as parent

for packet of type t. If no such node is found, step 4 should be followed.

4. Select as parent the neighbor node with minimum number of unscheduled neighbors.

The AAJST algorithm is formally written as Algorithm 1. Its explanation is given

below. The required notations are summarized in Table 4.1.

The AAJST algorithm can be explained as follows. For every outgoing packet, node

executes AAJST algorithm. Input to the algorithm is message m. The output of the

algorithm is corresponding parent and slot to transmit that message. Initially, node is

43

Algorithm 1: Attribute Aware Joint Scheduling and Tree Formation

procedure not ready
TSu = 0
Initialize OHu, RVu,TRu and candpu[TSu] to ∅
Wait until all neighbors at level (l + 1) are scheduled
Call READY ()

end procedure
procedure ready

TSu = TMu + 1
Increment TSu until candpu[TSu] has at least one member
PARENT SELECTION()
Broadcast REQUEST message to all nodes in candpu[TSu]
Wait until REPLY messages come from all nodes in candpu[TSu]
if any one REPLY is negative then

Call WAIT FOR SELECTION
else

Broadcast SCHEDULE message to confirm TSu and Pu

end procedure
procedure parent selection()

m = message to be scheduled
for each node n in candpu[TSu] do

if node type is same as message type then
Pu = n
return

max=0
for each node n in candpu[TSu] do

if max < no. of incoming packets of type m then
max = no.of incoming packets of type m
Pu = n

if max != 0 then
return
for each node n in candpu[TSu] do

if max < No. of neighbors of n of same type as m then
max = No. of neighbors of n of same type as m
Pu = n

if max != 0 then
return

else
Pu = node with min. no. of unscheduled neighbors
if more than one such nodes are present then

Pu = node with lowest ID

end procedure
procedure WAIT FOR SELECTION

Wait until FORBIDDEN messages are received from conflicting nodes
Call READY()

end procedure

44

in NOT READY state. It calls function not ready(). It waits for its neighbors in level

(l + 1) to get scheduled. Level of given node is l. When all such nodes are scheduled,

given node switches to READY state. it calls function ready().

In ready() function, node selects lowest possible transmission slot TSu as one more

than the highest transmission slot of children. Node increments TSu until TSu is found

such that no neighbors are receiving in TSu and set of candidate parents is not empty.

As a next step, parent selection() function is called to select suitable parent. It works

as follows: Given node is forwarding a packet of type t. First it checks if there is a node

of type t in candidate parent set. If such a node is present, it is selected as parent and

function returns. Otherwise, the node receiving maximum number of packets of type t is

selected as parent and function returns. If no node in candidate parent set is receiving

any packet of type t, following step is executed. Node checks if there is any candidate

parent which has any neighbor of type t. If so, such a node is selected as parent. If there

are more than one such nodes, the node with maximum number of neighbors of type t is

selected as parent. Then function returns. If still suitable parent is not found, the node

with the minimum number of unscheduled neighbors is selected as parent and function

returns.

Once parent is selected, node broadcasts REQUEST message to candidate parents.

If it receives positive response from all candidate parents, it broadcasts SCHEDULE

message. If negative response comes from any one candidate parent, node moves to

WAIT FOR SELECTION state. It calls wait for selection() function. When node over-

hears FORBIDDEN message, it switches to READY state and calls ready() function.

4.3.2 Correctness of Algorithm

Lemma 4.3.1. AAJST does not result in cycle.

Proof. In AAJST, tree formation and scheduling proceeds in bottom-up manner. Every

node at level l is scheduled only after its neighbors at level (l+1) are scheduled. The node

selects as many slot/parent pairs as the number of outgoing packets. Every node selects

parent from its neighborhood. Thus a node at level l may select parent from neighbors

at level (l + 1), l or (l − 1).

Assume that every node at level l selects node of level (l−1) as parent. Suppose path

45

is A− >B− >C− >D. That is parent of A is B, parent of B is C and parent of C is D.

Thus Level of A > Level of B > Level of C > Level of D. Now D has to select a parent.

For cycle to be formed, D should select either C,B or A as parent. But as every node of

level l has to select parent from level (l − 1), D can not select any of those three nodes

as parent. So cycle can not be formed.

There are chances of cycle formation when node is allowed to select a parent from

level l or (l+1). Following points are ensured by algorithm: (i) Parent is always assigned

higher time slot than highest time slot of children. (ii) Node can not select a node as

parent whose time slot is less than or equal to current time slot of node. Consider path

A− >B− >C− >D again. So, Time slot of A < Time slot of B < Time Slot of C < Time

slot D. Cycle would be formed if D selects C,B or A as parent. But it can not. Because

time slot of D would be highest among A,B and C. So it has to select different node as

parent. Thus a node may select parent from level l or (l + 1). But cycle is prevented by

condition that parent‘s slot should be higher than child‘s slot.

Lemma 4.3.2. AAJST results in collision free schedule.

Proof. When a node p wants to select a slot TSp, it prepares a list of neighbors which

do not transmit, receive or overhear in slot TSp. If any neighbor transmits in slot TSp,

it can not be selected as parent. Because wireless devices are half-duplex. Node can not

transmit and receive at the same time. If any neighbor is receiving or overhearing packets

from any other node in slot TSp, transmission from node p will create interference at that

neighbor node. Thus initial slot selection is such that collision does not occur.

It may happen that two nodes p and q together begin slot selection. Both of them

select TSp as their transmission slot. Both would send REQUEST message to their

candidate parents. If there is a common candidate parent, it would send positive reply

to only one of the two. Positive reply is sent to the one whose selected parent has least

number of unscheduled neighbors. If the parents have equal number of unscheduled

neighbors, number of unscheduled neighbors of sender nodes are checked. The one with

smaller number of unscheduled neighbors gets positive reply and the other gets negative

reply. If both the senders have equal number of unscheduled neighbors, tie is broken

based on ID of sender. The one with smaller ID is preferred. Thus either p or q (but

46

Scenario No. of Attributes (nA)
1 1
2 2
3 4
4 6
5 8

Table 4.2: Different Simulation Scenarios

not both) will get transmission slot TSp. The node which gets negative reply has to wait

until the other node completes slot/parent selection process.

From above two paragraphs, it is clear that no two nodes will select common trans-

mission slot such that it will create collision at candidate parents. Thus collision free

schedule is formed.

4.4 Simulation Results

We have used Network Simulator 2 (NS-2.35) to test the proposed algorithm. Simulation

is designed as follows:

4.4.1 Simulation Design

A square area of 3000 x 3000 meters is considered for node deployment. Nodes are

deployed randomly. The area is divided into grid of 20 x 20 points. Distance between

every two horizontal or vertical grid points is 15 meters. Nodes are probabilistically

deployed at grid points. Probability pd of node being deployed at a grid point is 0.5.

That is, there are 50% chances that a node is present at given grid point.

Network is heterogeneous. As mentioned earlier, type and attribute refer to the same

thing. In future discussions, word attribute will be used to refer to type of packet. To

test performance of proposed protocol, different scenarios are created as shown in Table

4.2:

Five different scenarios are created. In first scenario, no. of attributes present in the

network is 1. That is, all the nodes are of same type i.e. homogeneous network. In

second scenario, no. of attributes is 2. It means that two types of nodes are present in

47

Parameter Value
Node deployment Random
Radio Radius 30m
Transmission Power Consumption 0.660 W
Receive Power Consumption 0.395 W
Sleep Power Consumption 0 W
Data Generation Rate 1 packet every 10 seconds
Simulation Time 2500 Seconds

Table 4.3: Simulation Setup

the network. Other scenarios can be understood in a similar way. As seen from Table

4.2, from scenario 1 to 5, no. of attributes are increased. That is, network becomes more

and more heterogeneous.

In every scenario, nodes are randomly deployed on grid points as explained earlier.

Every node is randomly assigned attribute. No. of attributes is denoted as nA. All at-

tributes are equally probable. That is, the probability pAi that node is assigned attribute

Ai is as follows:

pAi =
1

nA

(4.3)

For example, in second scenario, nA is 4. Four attributes are A1, A2,A3,A4. So,

probability pAi is 0.25. That is, a node is assigned any one attribute with probability

0.25. As attribute denotes type of node, we can say that A1 is temperature, A2 is pressure,

A3 is solar radiation and A4 is humidity.

Different performance parameters are used to evaluate the performance of proposed

protocol. In every graph, X-axis is number of attributes. We are checking performance

by varying heterogeneity level of the network.

For every scenario, five different instances are generated randomly. Simulation result

for any scenario is an average of results of instances of that scenario. To measure the

confidence in the result, along with average, standard deviation is also calculated. The

same is plotted in graphs as error bars.

Network has only one sink. It is placed at bottom-right corner of plane.

48

4.4.2 Simulation Setup

Table 4.3 presents simulation setup. Deployment of nodes is random as mentioned in

previous sub-section. Radio radius of nodes is set to 30 meters. Normally sensor nodes

have radio radius in the same range. Every node generates one data packet at every 10

seconds. The duration of simulation is 2500 seconds. Initial 2000 seconds are for control

phase. During control phase, nodes perform slot and parent selection. Rest 500 seconds

represent data phase. Nodes generate and send data packets during data phase through

tree formed during control phase.

4.4.3 Performance Parameters

Following performance parameters are studied through simulation. As mentioned earlier,

number of nodes is denoted by n.

1. Schedule length (SH).

2. Average Aggregation Factor (η). It is defined in equation 4.2.

3. Control Overhead (CO). It is defined in equation 3.3.

4. Energy Consumption During Control Phase (EC). It is defined in equation 3.5.

5. Energy Consumption During Data Phase (ED). It is defined in equation 3.7.

4.4.4 Discussion of Results

Simulation Results are discussed in this subsection.

Aggregation Factor, Schedule length and Energy Consumed during Data

Phase

In Figure 4.4, the graphs of Average Aggregation Factor v/s. No. of Attributes are pre-

sented. As mentioned earlier, aggregation factor at a node is fraction of received packets

aggregated at that node. The higher value of aggregation factor is considered better. It is

seen from the graphs that AAJST results in better aggregation than DICA EXTENSION.

In AAJST, for every packet, a parent is selected considering attribute of the packet. This

49

Figure 4.4: Dependency of Aggregation Factor on No. of Attributes

increases the chance that packet would be aggregated earlier in its journey towards sink.

Thus every node needs to forward fewer number of packets. As a result, better aggrega-

tion factor is achieved.

When network is homogeneous, perfect aggregation occurs in both the algorithms.

Every node sends out only one packet, no matter how many packets are received. Thus

aggregation factor is 1 (100% aggregation). As number of attributes increases, aggrega-

tion factor deteriorates. When more attributes are present, sender of packet may not be

able to find suitable next hop such that packet can be aggregated.

It is observed that when two attributes are present, the difference between aggrega-

tion factors of AAJST and DICA EXTENSION is around 20 %. But as heterogeneity

increases, the gap between aggregation factors of two methods is reduced. When no.

of attributes is 4, the difference is around 10%. At the end, the gap is as small as 3%

when no. of attributes is increased to 16. When heterogeneity is high, it is difficult for

AAJST also to find a parent where packet could be aggregated. Packet gets aggregated

after traveling more number of hops. Thus at high level of heterogeneity, performance of

AAJST is close to DICA EXTENSION.

The graphs for Schedule Length v/s. No. of Attributes are shown in Figure 4.5. It

is seen that AAJST results in small schedule length than DICA EXTENSION. Schedule

length is the count of unique slots required to schedule the tree. It is explained earlier

50

Figure 4.5: Dependency of Schedule Length on No. of Attributes

that AAJST results in better aggregation factor than DICA EXTENSION. Due to better

aggregation, number of packets passing through the tree during a TDMA cycle is reduced.

Thus less number of slots are required to schedule the tree.

As it is seen in Figure 4.4 that aggregation factor deteriorates with increase in number

of attributes. As schedule length in inversely proportional to aggregation factor, schedule

length increases with increase in number of attributes present in the network. This applies

to both AAJST and DICA EXTENSION.

When number of attributes are 2, 4 and 6, schedule lengths in both the algorithms

are almost same. But for the remaining cases, AAJST results in smaller schedule length

then DICA EXTENSION. When number attributes are 8 and 10, AAJST gives 5 percent

smaller schedule length than DICA EXTENSION. Gradually the difference increases. For

other values the difference is 10 percent or more.

In Figure 4.6, the graphs of Energy Consumption during Data Phase v/s. No. of

Attributes are shown. Nodes send and receive data packets during data phase. If less

number of packets are sent/received, less energy is consumed. The AAJST algorithm

results in better aggregation factor than DICA EXTENSION. So, nodes need to forward

less number of data packets. Thus energy consumed in data phase is less compared

to DICA EXTENSION. As in both the algorithms, aggregation factor deteriorates with

increase in number of attributes, energy consumption during data phase increases with

51

Figure 4.6: Dependency of Energy Consumption during Data Phase on No. of Attributes

increase in number of attributes. The saving in energy consumption is from 15 percent

to 30 percent.

Total Number of Required Slots, Control Overhead and Energy Consumption

during Control Phase

Figure 4.7: Dependency of Total No. of Transmission Slots on No. of Attributes

In Figure 4.7, the graphs of Total Number of Transmission Slots v/s. No. of At-

52

tributes are presented. As explained earlier, increase in no. of attributes results in poor

aggregation. That is, nodes have to forward more number of packets. It is assumed

that every packet requires one transmission slot. As number of packets required to be

forwarded increases, number of slots required by a node also increases. Thus the total

number of required slots to schedule entire tree increases with no. of attributes. Schedule

length is count of unique slots whereas here total of slots required by all the nodes is

considered. Due to spatial reuse, schedule length is less than count of total slots.

As explained earlier, AAJST results in better aggregation factor. As less number

of packets are forwarded by nodes, number of slots required is also less. So AAJST

results in less number of total transmission slots than DICA EXTENSION. It is seen

from the graphs that AAJST results in approximately 10 percent less transmission slots

than DICA EXTENSION.

Figure 4.8: Dependency of Control Overhead on No. of Attributes

In Figure 4.8, the graphs of Control Overhead v/s. No. of Attributes are presented.

During scheduling & tree formation, every node exchanges some control messages with

neighbors so that collision free schedule is formed. These messages constitute control

overhead. It is seen from Figure 4.8 that as no. of attributes increases, control overhead

also increases. As explained earlier, increase in no. of attributes results increase in

total number of required transmission slots. Every node has to select more number of

transmission slots. For each slot-selection, a number of control messages are exchanged

53

between given node and its neighbors. Thus control overhead increases with no. of

attributes.

As AAJST needs less number of transmission slots, it’s control overhead is also less

compared to DICA EXTENSION. It is seen from the graph that AAJST results in 7

percent to 10 percent less control overhead than DICA EXTENSION.

Figure 4.9: Dependency of Energy Consumption during Control Phase on No. of At-
tributes

Energy consumption during control phase is directly proportional to control over-

head. In Figure 4.9, graphs of the same are shown. The nature of graphs is similar to

those in Figure 4.8. So, explanation is not repeated. It is seen that AAJST results in

approximately 5 percent less energy consumption compared to DICA EXTENSION.

Thus following conclusion can be derived from graphs shown in Figures 4.4,4.5 and

4.6. In AAJST algorithm, every packet is sent towards a parent such that it can be

aggregated as soon as possible. Whereas in DICA-Extension, no such criteria is used.

So, AAJST algorithm results in better aggregation compared to DICA-extension. As

aggregation factor increases, less packets come out of nodes. Thus energy spent in data

transmission is also saved. In addition, as every packet consumes one time-slot, reduction

in number of outgoing packets results in reduction in number of slots required to schedule

the tree. So, schedule length is also reduced.

54

4.5 Summary

In this chapter, AAJST (Attribute Aware Joint Scheduling & Tree formation) algorithm

for single-sink heterogeneous networks is presented. The idea is to select different parent

for every outgoing packet. Parent selection is done based on type of packet. It is observed

that AAJST results in better aggregation compared to DICA EXTENSION. As a result,

it results in smaller schedule length, reduction in energy consumption during control

phase and data phase.

55

Chapter 5

Schedule Length Balancing for Multi

sink HoMogeneous networks

(SLBMHM) Algorithm

When node distribution is not uniform, schedule lengths of trees may be very different. In

this chapter, a distributed algorithm is presented which guides every node to join exactly

one tree such that schedule lengths of trees remain balanced. The proposed algorithm is

named as SLBMHM (Schedule Length Balancing for Multi sink HoMogeneous networks).

As a result of balancing, overall schedule length is also minimized. This chapter presents

detailed design of proposed algorithm, correctness proofs and simulation results.

5.1 Motivation

Often node deployment is not uniform. Many times application requirement is such that

finer observation is required at some places in the region. Thus more sensors need to be

deployed at such places. But observation need not be very fine at other places. So sensors

may be sparsely deployed. Thus some places in the network have high node density and

other places have low density. But every node eventually becomes part of a tree. Thus

some trees are very dense and others are very sparse. Schedule length of a dense tree is

higher than that of sparse tree. Thus difference in node density results in difference in

schedule lengths of trees.

56

One way to attempt schedule length balancing is as follows: First form the trees

and assign slots to the nodes. As a result, exact schedule length of each tree would be

available. Now move the nodes from trees with high schedule length to the trees with

low schedule length. The movement should be such that the resulting schedule lengths

of all the trees remain almost equal.

It is suggested in DICA([21]) that scheduling of an aggregated convergecast tree must

should be done in bottom-up fashion. If a node moves from one tree to another, it means

that its parent changes. For aggregation freshness, the time slot of parent must be higher

than child’s slot. If parent’s current time slot is not greater than newly arrived child’s

time slot, parent must be assigned new slot. The process results in a sequence of changes.

That is, now slot of parent’s parent need to be modified. If a large number of nodes move

from one tree to another tree, the other must be rescheduled completely. On the other

end, the tree whose nodes leave must also be rescheduled for effective time slot utilization.

Otherwise, many slots in the schedule (of the tree) may be wasted.

Thus it seems that if balancing is done after scheduling, scheduling need to be done

once again. As distributed scheduling algorithms involve message exchange between

every node and its neighbors, scheduling is costly in terms of energy consumption. So

rescheduling is not desirable.

So it is better to perform scheduling after assignment of nodes to trees. For this

every node has to join a tree such that schedule lengths of trees remain balanced at the

end. In this work, we have proposed an algorithm knows as SLBMHM(Schedule Length

Balancing for Multi-sink HoMogeneous sensor networks). The algorithm runs before slot

& parent selection takes place. The algorithm works in two phases: (i) Schedule Length

Estimation (ii) Tree Switching. During schedule length estimation, temporary sink-rooted

trees are formed. The schedule length of each tree is estimated by corresponding sink.

The schedule lengths are exchanged by the sinks and an average is calculated. In the

second phase, nodes from the trees with greater than average schedule length are asked to

move to those trees whose schedule length is smaller than average schedule length. Once

each and every node decides which tree (i.e. sink) to join, exact slot & parent selection

as suggested in DICA([21]) is performed.

57

5.2 Problem Statement

To design a distributed schedule length balancing algorithm for aggregated converge-

cast scheduling in multi-sink sensor networks with non-uniform node distribution and

homogeneous nodes.

5.2.1 Assumptions

1. One or more sinks are deployed.

2. Network is homogeneous. That is, all the nodes are of the same type.

3. Node distribution is not uniform.

4. Every sink is root of exactly one tree.

5. Every node joins exactly one tree. In other words, trees are disjoint.

6. Every packet requires one time-slot.

Most of the assumptions are discussed in Chapter 3. So detailed explanation is not

given here.

5.2.2 Objectives

1. Overall schedule length (SH) must be minimized. It is defined in equation 3.1.

2. Difference between schedule lengths of trees should be minimal. It is denoted as

SHdiff . It is defined in equation 3.2

3. Control Overhead (CO) should be minimal. It is defined in equation 3.3.

4. Average Energy Consumption during Control Phase should be minimal. It is de-

noted as EC . It is defined in 3.5.

5. Minimize Average Energy Consumption during Data Phase. It is denoted as ED.

It is defined in 3.7.

58

Figure 5.1: Illustration of Node Deployment for SLBMHM Algorithm

5.3 SLBMHM Algorithm

5.3.1 Illustration of the Algorithm with an Example

In Figure 5.1, a sample topology is shown. Nodes 0 to 24 are part of sparse region. Nodes

25 to 105 are in dense region. Assume that there are two sinks: S1 is node 12 (center

node in sparse region), S2 is node 65 (center node is dense region). At the beginning of

algorithm, S1 and S2 will turn by turn flood HELLO packet. At the end, every node will

know its hop distances from both S1 and S2. Every node will select the nearest sink (in

terms of hop count) as its home sink. Nodes 0 to 24 will join tree of S1. Let us call it

Group 1. Nodes 25 to 105 will join tree of S2. Let us call it Group 2.

Every node in Group 1 and Group 2 will select one node as temporary parent. In

Figure 5.2, formation of temporary trees is shown. All edges are not shown in figure. Some

sample edges are shown to provide better visualization. Now leaf nodes in Group 1 and

Group 2 will calculate their neighbor count and height. Neighbor count and height would

be sent as part of JOIN messages. Each node in path will wait for its temporary children

to send JOIN message. Once a node receives JOIN messages from all its temporary

children, it will add neighbor counts received with its own neighbor count. The node

will send JOIN message to its parent. It will contain total neighbor count and maximum

59

Figure 5.2: Illustration of Formation of Temporary Trees in SLBMHM Algorithm

of height values received from children. Finally S1 and S2 both will calculate values of

average density and height for respective tentative trees.

Based on average density and depth, sink nodes will estimate the schedule lengths of

their tentative trees. In this example, schedule length of tree rooted at S1 will be less i.e.

smaller than average schedule length of two trees. Reverse is true for tree rooted at S2.

Sink S1 will flood a message BAL NOT REQD in its tree. Sink S2 will flood BAL REQD

message in its tree. S2 estimates the maximum level (hbal) of its tree to have balanced

schedule length. It will mention the same in the BAL REQD message. Nodes at level

hbal + 1 or higher in tree rooted at S2 should attempt to shift to tree rooted at S1. Other

nodes would not shift.

Every node in Group 1 will broadcast SINK CONFIRM message to tell its neigh-

bors that it is stick to the old sink. Nodes at the boundary of two subregions (i.e.

node 25,34,43,52,61,70,79,88,97) are the first ones to hear SINK CONFIRM message from

nodes in Group 1. These nodes will try to switch to S1. Every node will estimate the

possible schedule length of S1 if it joins the sink. If estimated schedule length is less than

or equal to balanced schedule length, node would switch to S1. Else it would stick to the

old sink. In both the cases, node broadcasts a SINK MODIFIED message to inform its

home sink to its neighbors. The message contains following fields: flag sink changed, ID

60

of new home sink and estimated new schedule length of S1. If node has changed the sink,

it will set value of sink changed flag to 1 and will set ID to 12 (i.e. S1). Else it will set

value of sink changed flag to 0 and will set ID to 65 (i.e. S2).

For example, let us assume that node 61 (node filled with red color) switches to S1.

It will write the new estimated schedule length of S1 considering that itself joins S1.

Consider that original schedule length of S1 is 10. The node 61 is 3 hops away from S1.

In neighborhood of 61, no node is at distance 3 from S1. So if node 61 joins the sink S1,

new schedule length of S1 will be 10 + 0 + 1 = 11. In SINK MODIFIED message, node

61 will mention value 11.

Consider node 63 (filled with gray color). It is 4 hops away from S1. It receives

SINK MODIFIED message from 61. Node 61 is 3 hops away from S1. It knows that if 61

joins S1, the resulting schedule length is likely to be 11. Now assume that two neighbors

of 63, namely 71 (filled with green color) and 53 (filled with yellow color) have switched

to S1. Both have broadcasted SINK MODIFIED message. So node 61 is aware that 71

and 53 have joined S1. Thus, number of nodes at same distance as node 63 from S1 and

have switched to S1 are 2. Node 63 estimates new schedule length of S1 as 11 (as received

from 61) + 2 (two neighbors at the same level as itself from S1 have switched to S1) + 1

(itself will require one slot) = 14. If this estimated value is less than balanced schedule

length, node 63 will switch to S1. Else it will stick to S2.

In this example, node 63 is at hop distance 4 from S1. In its neighborhood, there is

only one node (node 61) at distance 3 from S1. There may be multiple nodes at level 3 in

neighborhood of node 63. So node 63 may receive multiple SINK MODIFIED messages.

In that case, it will use maximum of received values of schedule estimate in its calculation

(i.e. first term in sum) of new schedule of sink1.

Switching process would start from border of two regions. It would progress from

border to left i.e. towards S2. Slowly nodes in left side would switch to S1. As we move

towards left boundary of region, chances of node switching to S1 gets reduced. Because,

as distance from S1 increases, the estimated schedule length (if node switches to S1)

increases. When estimated schedule length starts approaching balanced schedule length,

switching process stops. Thus it is ensured that schedule length of S2 decreases, but

that of S1 does not cross balanced schedule length. Once switching process is complete,

DICA[21] would be executed to perform actual scheduling & tree formation.

61

5.3.2 Flow Diagram of the Algorithm

Proposed algorithm is explained through flow diagrams in Figures 5.3 and 5.4. The figures

are self-explanatory. First the steps of Figure 5.3 are executed. Then steps mentioned

in Figure 5.4 are executed. Details are not mentioned in flow diagram. But it helps the

reader to understand overall approach.

Figure 5.3: Flow Diagram of SLBMHM Algorithm - Part I

5.3.3 Steps of the Algorithm

In this subsection, steps of SLBMHM algorithm are mentioned. Important notations

used throughout the algorithm are summarized in Table 5.1.

The steps are as follows:

1. Flooding of HELLO packets and leveling of nodes:

(a) Every sink Si floods HELLO packets in the network turn by turn.

62

Figure 5.4: Flow Diagram of SLBMHM Algorithm - Part II

(b) HELLO packet has a field LEV EL. It is initialized to 0 by sink as sink is at

LEV EL 0.

(c) Every node receiving HELLO packet generated from Si performs following

steps:

i. If LEV EL value in HELLO packet is smaller than current value of di,

next two steps are executed. Else no action in taken.

ii. Set di to LEV EL + 1.

iii. Increment LEV EL field of HELLO by 1 and broadcast HELLO so that

its neighbors would receive it.

At the end of step 1, every node knows its distance from each of N sinks. That

is every node has updated the vector (d1, d2, d3,,dN).

2. Formation of temporary trees: Every node performs following steps to form tem-

63

Parameter Meaning
n No. of nodes
N No. of sinks
Si Sink i
HELLO Packet initiated by sinks for leveling of network
LEVEL Field in HELLO packet
di Distance in hop count from sink Si

(initialized to infinity)
h Height of given node in temporary tree

i.e. distance in hop count from temporary home sink
temp home sink Temporary home sink of given node
temp parent Temporary parent of given node in temporary tree
JOIN Message sent by a node to its temporary parent
σi Average density of tree rooted at Si

hi Height of tree rooted at Si

SHest
i Estimated schedule length of tree i

SHbal Average of schedule lengths of all trees
i.e. balanced value

hbali Required height of tree of Si to achieve SHbal

BAL REQD Message sent by overloaded sink in its tree
BAL NOT REQD Message sent by underloaded sink in its tree
SINK MODIFIED Message broadcasted by a node to inform

its neighbors about tree-switching
sink changed Flag present in SINK MODIFIED message.

It is 0 if sender of SINK MODIFIED decides not to change
temp home sink. Else it is 1.

SHcest
i Current estimated schedule length of tree rooted

at Si. Used during tree switching.
nbr switchedi No. of neighbors of given node which switched

to sink Si and are at same hop distance from Si as given node.

Table 5.1: Notations used in SLBMHM Algorithm

porary trees.

(a) Temporarily join the sink which is at the minimum distance. Every node joins

Si such that di = min(d1,d2,d3,....,dN). Height h of node is set to di. The

variable temp home sink is set to Si

(b) Select any one node as parent which is at smaller distance from the selected

sink. This parent is temporary. The ID of temporary parent is stored in

temp parent. Actual scheduling and parent selection will be performed later.

At the end of step 2, network is divided into N temporary trees. Every tree is

64

rooted at one sink.

3. Estimation of schedule length by every sink: Following steps are executed so that

every sink could estimate schedule length of its temporary tree.

(a) Every leaf node will send a JOIN message to temporary parent so that parent

would add the node in its temporary children list. JOIN message sent by leaf

nodes contains following information.

i. Neighbor count. The neighbors are those nodes which are in direct radio

range of given node and have same temp home sink.

ii. Height h.

iii. Node count. This is the number of nodes in sub-tree rooted at sender of

JOIN message. This field contains value 1 as leaf node is the only node

in its subtree.

(b) Every non-leaf node at level h will wait to hear JOIN messages from its neigh-

bors at level (h + 1)) which belong to same temp home sink. Once it hears

JOIN messages from all neighbors at level (h+ 1), it sends a JOIN message to

its temporary parent. JOIN message sent by non-leaf node contains following

information.

i. Total neighbor count. It is sum of neighbor counts received from tempo-

rary children and node’s own neighbor count.

ii. Maximum of height values received from temporary children.

iii. Total Node count. It is sum of node counts received from temporary

children plus 1. As mentioned earlier, this field indicates number of nodes

present in the sub-tree rooted at given node.

(c) At the end of above step, every sink Si receives JOIN messages from its tem-

porary children. Every sink is able to calculate following parameters about its

temporary tree.

i. Total neighbor count. Sink Si finds sum of total neighbor counts received

from its temporary children.

ii. Height (hi) of the tree.

65

iii. Total node count. It is sum of node counts received from its temporary

children.

iv. Average density (σi). It is ratio of total neighbor count and total node

count.

v. Estimated Schedule length (SHest
i). It is the estimate of schedule length

of temporary tree rooted at Si. It is function of σi and hi. It is derived by

putting values of σi and hi in Equation 5.9. Detailed explanation about

schedule length estimation is given later in the chapter.

(d) Sinks exchange estimated schedule lengths and find average schedule length.

It is referred as ‘balanced schedule length’, denoted as SHbal.

4. Schedule length balancing: Following steps are performed for schedule length bal-

ancing.

(a) If sink Si finds that SHest
i is greater than SHbal, it attempts to remove some

nodes from its tree. It sends BAL REQD message in its tree to inform the

nodes that balancing is required. Else it sends BAL NOT REQD message in

the tree.

(b) As part of BAL REQD message, sink Si sends following parameters:

i. Estimated schedule lengths i.e. SHest
1 ,SHest

2 ,....,SHest
N .

ii. Balanced schedule length (SHbal).

iii. Required height (hbali) of the tree rooted at sink Si to achieve balanced

schedule length. The value of hbali is calculated by putting SHbal and

average density σi of the tree in Equation 5.9. Sink indicates that all the

nodes in its tree at a level greater than hbali should attempt to switch to a

different tree.

(c) If a node whose temp home sink is Si, receives BAL NOT REQD message

from Si, it confirms attachment to sink Si by broadcasting SINK CONFIRM

message.

(d) If a node whose temp home sink is Si, receives BAL REQD message from Si,

the node will broadcast SINK MODIFIED message with sink changed flag set

to 0 if di is less than or equal to hbali .

66

(e) In the above case, if di is greater than hbali , following steps are executed to

change home sink.

i. Wait for neighbors belonging to sinks having schedule length less than

that of Si to finalize their sinks either by deciding to stick with same sink

or changing to new sink. Then following steps are performed.

ii. Create a set of target sinks. A sink Sj is member of the set if following

two conditions are satisfied: (i) Schedule length of Sj is less than balanced

schedule length. (ii) At least one node is present in neighborhood of given

node which belongs to Sj and is nearer to Sj compared to given node. If the

set is empty, node keeps waiting. When it overhears a SINK MODIFIED

message (described later), it tries to create the set again. If set is non-

empty, following steps are performed.

iii. Assume that Z sinks are present in the set of target sinks. The set is

denoted at tgt sinks. If sink Sj is present in set tgt sinks, its current

schedule length is denoted as SHcest
j .

• SHcest
j is same as SHest

j if the node (i.e. the one trying to switch) is

one hop away from a node whose temp home sink is Sj.

• Otherwise SHcest
j is set as follows. Given node is more than one hops

away from node(s) whose temp home sink is Sj. But still Sj is in set

Z. It means that some neighbor has switched to Sj. When a node

switches to new sink, it broadcasts SINK MODIFIED message with

sink changed flag set to 1. In addition, it also writes new estimated

value of SHcest
j in the message. Given node may overhear many such

messages. It sets SHcest
j to the maximum of received values of SHcest

j .

iv. Node estimates new schedule length of every sink Sj in set tgt sinks consid-

ering that it would switch to the sink. Number of neighbors who belong

or switched to sink Sj be nbr switchedj. Then new value of SHcest
j is

estimated as follows:

SHcest
j = SHcest

j + nbr switchedj + 1 (5.1)

The rationale behind above formula is as follows: The value present

67

in SHest
j is the current estimated schedule length of sink Sj as known

to given node. At one time multiple nodes are attempting to switch to a

different sink. Given node overhears SINK MODIFIED messages from

neighbors. So it knows which neighbors have switched to which sink. It

can not use the same slots as used by its neighbors otherwise collision may

occur at other nodes. Second term nbr switchedj takes care of the same.

The term nbr switchedj is the count of neighbors switched to Sj and

at the same hop distance from Sj as given node. The nodes at a lower

distance may have already switched. The nodes at a higher distance may

be waiting to switch. Actual scheduling algorithm proceeds in bottom-up

manner. So a node at height h would be scheduled only after its neighbors

at height h + 1 are scheduled. At one time competing nodes are those at

the same level.

The last term in above equation is ‘1’. Given node transmits one

packet. So it will consume one slot. Thus one additional slot should be

added in current schedule length.

v. Node updates SHcest
j for each sink Sj in set tgt sinks. It decides to shift

to sink Sk whose SHcest
k minimum and is less than SHbal. If no such sink

is found, node sticks to current sink and broadcasts SINK MODIFIED

message with flag sink changed set to 0.

vi. When node decides to switch to sink Sk, it broadcasts SINK MODIFIED

message. The message has sink changed flag set to 1. The message

notifies the neighbors about node’s decision. The message also contains

latest value of SHcest
k so that neighbors could update their estimates of

SHcest
k .

5. Once every node finalizes the sink, scheduling & tree formation algorithm DICA

[21] is executed. Every node selects a slot and parent. Thus at the end, N different

trees are formed. Every tree is rooted at one sink.

68

5.3.4 Correctness of the Algorithm

Lemma 5.3.1. In homogeneous network, schedule length of tree T depends on it’s average

density (neighbor count, σ) and height (h).

Proof. For collision free schedule formation it is required that transmission slot selected

by given node should be such that it does not create interference at neighboring nodes.

Suppose that number of neighbors of node n is nc. Each one of nc neighbors is receiving

in certain slot. Thus node n can not transmit in those nc slots. The slot selected by n

should be different than those nc slots. If network is dense, value of nc would be high. If

network is sparse, nc would be low. Thus in a dense network, number of slots consumed

are more compared to sparse network.

Slot assignment should be bottom-up in aggregated convergecast. That is, slot assign-

ment should progress from leaf to root. Leaf node(s) should be assigned lowest timeslot.

Time slots increase from leaf to root. This criteria is essential for aggregation freshness

i.e. parent could aggregate children’s packets in the same TDMA cycle and transmit

further. Otherwise parent would receive packets from children in one TDMA cycle and

could forward in next TDMA cycle. If tree height is more, leaf is far from root. So more

slots are required to reach the root. This in turn means that if height increases, schedule

length increases.

In raw convergecast, scheduling need not be bottom to top. But every node has to

forward all the packets coming from children node. If leaf node is far from root, its packet

has to travel longer path to root. At each hop, packet needs one time-slot. So as distance

from root increases, number of required time slots also increases.

Thus whether it is raw or aggregated convergecast, schedule length depends on tree

height and average density.

Lemma 5.3.2. SLBMHM algorithm ensures that every node has at least one path to the

sink.

Proof. In SLBMHM algorithm, first temporary trees are formed. Every node joins the

sink which is at least distance compared to other sinks. Node finds its distance from sinks

based on LEV EL field in HELLO packets received from sinks. If HELLO packet from

69

sink comes to a node, it means that there is at least one path from node to sink. Node

selects any one node as temporary parent. Thus unique path is guaranteed. Through

that path values of neighbor count and height reach the sink.

During schedule length balancing phase, a node belonging to an overloaded sink tries

to switch to a tree of underloaded sink. As mentioned in algorithm, a node selects a

sink as new home-sink subject to following conditions: (i) Current schedule length of

that sink is less than average schedule length. (ii) There is at least one node present

in neighborhood which belongs to new home-sink and is nearer to new sink compared

to current node. The second condition ensures that node has at least one path to sink.

During actual scheduling and tree formation phase, node selects a node as parent which

belongs to the same home-sink as itself. Due to condition (ii) above, there will be at-least

one such node in neighborhood of sink. So, it will be able to select such a node as parent.

Lemma 5.3.3. SLBMHM algorithm reduces schedule length of overloaded sink(s) without

increasing schedule length of underloaded sink(s) beyond average.

Proof. In SLBMHM algorithm, every sink estimates its schedule length. Sinks exchange

schedule lengths and calculate average (or balanced) schedule lengths.

• Consider that number of sinks is two i.e. S1 and S2.

Assume that schedule length of S1 is more than average schedule length. Schedule

length of S2 is less than average schedule length. S1 will ask its nodes at a level

higher than certain threshold level hbal to switch to S2, if possible. Every node

i decides whether to switch to S2 or not based on following criteria: If resulting

schedule length of S2 is less than balanced schedule length, then only node would

switch. When a node switches to new tree, it broadcasts estimated new schedule

length of that tree. Thus other nodes would also know about new schedule length

of that tree. Thus when a node takes decision of whether to switch or not, it has

latest information about schedule length of the tree to which it wants to switch. It

would not switch if resulting schedule length is more than balanced value.

• Consider that number of sinks is more than two, i.e. S1,S2,S3,....,SN

70

Consider that schedule length of S1 is more than average schedule length. It would

ask its nodes at a level higher than hbal to shift to a different tree. Here node may

have multiple choices of sinks to switch. Node would prepare a list of tentative

target sinks. Every sink Sj present in this set would meet following two conditions:

(i) Schedule length of Sj is less than balanced schedule length. (ii) At least one

node is present in neighborhood of given node which belongs to Sj and is nearer

to Sj compared to given node. For each Sj present in the set, node estimates

new schedule length as if it switches to Sj. Node would switch to the sink whose

estimated schedule length is less than balanced schedule length and least compared

to other sinks in the set. If there is no sink found whose estimated schedule length

is less than balanced schedule length, node would stick to old sink.

Thus it is attempted to reduce schedule length of one sink, but without increasing

schedule length of the other sink beyond balanced value.

Lemma 5.3.4. If schedule lengths of trees are balanced, maximum schedule length of

the network is also reduced. Thus average number of slots before a node gets its turn to

transmit also gets balanced.

Proof. Assume that there are N sinks in the network. The corresponding trees are

T1,T2,...,TN . Their schedule lengths are SH1,SH2,....,SHN respectively. Let average

schedule length be SHbal. The maximum schedule length (or overall schedule length

of network) SHmax is max (SH1,SH2,....,SHN).

All nodes and sinks are part of same network. But different trees can be scheduled

independently i.e. on different frequency channels. If schedule lengths are balanced, the

difference between SHi and SHbal would be small for every tree Ti. After balancing,

revised maximum schedule length SH ′
max is likely to be around SHbal. Thus SH ′

max <

SHmax. So it is proved that maximum schedule length is reduced.

If schedule lengths are not balanced, number of slots a node has to wait to get its

turn to transmit depends on which tree it belongs to. If node belongs to tree with small

schedule length, it would get its turn to transmit very quickly. But if it belongs to a tree

with large schedule length, it has to wait for longer period of time before it gets its turn.

71

When schedule lengths are balanced, schedule lengths of all trees are near to SHbal. So

no matter which tree a node belongs to, it has to wait for approximately SHbal slots to

get transmission turn. Thus all nodes have to wait for almost equal number of slots.

Thus balancing schedule length not only reduces overall schedule length of the network

but also reduces latency.

5.3.5 Schedule length (SH) as function of Average Density (σ)

and Height (h) of Tree

It is mentioned in proposed algorithm that every sink estimates schedule length (SH) of

its temporary tree based on following two parameters: average density (σ) and height

(h) of tree. To establish relationship between SH, σ and h, a simulation based study is

carried out as follows.

Single sink network is considered. For a given value of σ, values of h are gradu-

ally changed. For each h, DICA[21] as explained in Chapter 2 is executed and SH is

calculated.

Following values of densities are used: σ1 = 4, σ2 = 8, σ3 = 12 and σ4 = 20. Meaning

of σ = x is that there are average x neighbors of every node. In other words, x nodes are

present in radio range of every node. For each σi, depth is varied from 2 to 20. Thus there

are four graphs of schedule length (SH) v/s. height (h). These equations are mentioned

below:

SH1 = 1.07 ∗ h+ 4.57, (σ = 4) (5.2)

SH2 = 1.88 ∗ h+ 9.07, (σ = 8) (5.3)

SH3 = 1.22 ∗ h+ 18.84, (σ = 12) (5.4)

SH4 = 4.90 ∗ h+ 35.81, (σ = 20) (5.5)

72

It is observed that schedule length varies linearly with height. Thus,

SH = m ∗ h+ c (5.6)

Here m is the slope of graph and c is y-axis intercept. It can be observed that slope

values (1.07,1.88,1.22 and 4.90) vary with σ. Also value of intercept c (4.57, 9.07,18.84

and 35.81) vary with σ. Thus we can plot graphs of slope v/s. density and intercept v/s.

density.

Following equation shows relation of slope and density.

m = 0.2 ∗ σ + 0.24 (5.7)

Following equation shows relation of intercept and density.

c = 2 ∗ σ − 5 (5.8)

Putting values of m and c in equation 5.6, final SH can be presented as function of

σ and h as follows.

SH = pσh+ qh+ rσ − v (5.9)

In equation 5.9 above, values of p, q,r and v are 0.2,0.3,2 and 5 respectively. The

values of σ used are from 4 to 20 and height h is between 2 to 20.

Every sink knows average density (σ) and height (h) for its tentative tree. So above

equation can be used by a sink to estimate schedule length of its tree.

5.4 Simulation Results

In this section, simulation results are discussed. Details of simulation design, simulation

setup, other protocols used for comparison and different performance parameters are also

discussed.

73

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner

(c) Sinks are nearby

Figure 5.5: Different Sink Deployments

5.4.1 Simulation Design

In Figures 5.5a, 5.5b and 5.5c, different sink deployments are illustrated. The same is

listed below. There are two sinks: S1 and S2.

1. Sinks are in center of each sub-region (Figure 5.5a).

2. Sinks are at opposite diagonal corners (Figure 5.5b).

3. sinks are near to each other (Figure 5.5c).

The three cases differ only in sink placements. Else they are same. Common details

are presented next. A square region of 200 meters x 200 meters is used for simulation. It is

divided into a grid of 20 x 20 points. Distance between any two horizontal or vertical grid

74

Scenario Probability pd1 Probability pd2 Density Deviation (σdev)
1 0.3 0.3 3
2 0.3 0.5 4
3 0.3 0.7 5
4 0.3 0.9 6

Table 5.2: Node Distribution Scenarios

points is 10 meters. The whole region is divided into two sub-regions. Each sub-region

is of size 100 meters x 200 meters. Each region contains one sink.

Nodes are deployed randomly in the network such that region 1 has low node density

and region 2 has high node density. In region 1, probability of node being present at

a grid point be pd1. Similarly let pd2 be the probability of node being deployed at a grid

point in region 2. Four different scenarios are generated. Value of pd1 is fixed to 0.3 in all

scenarios. But from scenario 1 to scenario 4, values of pd2 is varied as 0.3,0.5,0.7 and 0.9.

That is from scenario 1 to scenario 4, node density of region 2 is incremented.

Assume that there are n nodes in the network. Let σi be the neighbor count of node

i, then average density σ is defined as follows:

σ =

∑n
i=1 σi
n

(5.10)

Density deviation (σdev) for the entire network is calculated as follows:

σdev =

√∑n
i=1(σ − σi) ∗ (σ − σi)

n
(5.11)

The four scenarios are summarized in Table 5.2.

As seen from Table 5.2, density deviation increases as region 2 becomes denser. This

is natural because as density of region 2 increases, average number of neighbors per node

in region 2 increases. But average number of neighbors per node in region 1 is fixed. As

a result, deviation in density increases.

The SLBMHM algorithm is evaluated with respect to different performance param-

eters. These parameters are discussed in next sub-section. But for every parameter,

performance is evaluated by varying density deviation. In other words, X-axis is density

deviation in all graphs of simulation results.

There are three different sink deployments. For each deployment, there are four dif-

75

Parameter Value
Node deployment Random
Area 200m x 200m
Radio Range 30m
Transmission Power Consumption 0.660 W
Receive Power Consumption 0.395 W
Sleep Power Consumption 0 W
Data Generation Rate 1 packet every 10 seconds
Simulation Time 5500 Seconds

Table 5.3: Simulation Setup

ferent node distribution scenarios. Performance of SLBMHM is evaluated for each combi-

nation of sink deployment and node distribution scenario. For a specific sink deployment,

four different instances of each node distribution scenario are randomly generated. So,

each point in graph is an average of four different simulation runs. Corresponding stan-

dard deviation is also calculated and plotted as error bar.

5.4.2 Simulation Setup

Table 5.3 summarizes different parameters used for simulation. Radio range of nodes is

set to 30 meters. The same is used in simulation setup in Chapter 4. Simulation time

is 5500 seconds. Out of which, 5000 seconds are used for execution of schedule length

balancing and scheduling & tree formation algorithm. Rest 500 seconds are for data

transfer. During these 500 seconds, nodes generate data and send to sink. As mentioned

in table, every node generates 1 data packet every 10 seconds.

5.4.3 Discussion of Results

In literature, there are many existing algorithms for multi-sink networks. To evaluate our

proposed algorithm, we have compared the same with following different approaches.

1. Hop count based approach: Every node selects nearest sink as home sink. Here

nearest means the sink reachable in the least number of hops. Graphs for this

approach are labeled as ‘hop-count’.

2. LBR (Load Balanced Routing)[34]: It deals with tree formation in multi-sink net-

works. Every node selects a sink based on ratio of number of neighbors of sink and

76

distance from sink in hop count. The sink with highest ratio is selected as home

sink. Corresponding graphs are labeled as ‘LBR’ (Load Balanced Routing).

3. SMTLB (Spanning Multi Tree Load Balanced routing) [38]: It also deals with tree

formation in multi-sink networks. Initially every one hop neighbor of a sink becomes

root of a subtree. Thus multiple subtrees are initiated. Subtrees grow in parallel.

At every iteration, the least loaded tree is selected for expansion.

Performance Measures

Following performance parameters are studied through simulation. Number of nodes is

denoted by n.

1. Density Difference (σfrac) : Let Average Density of Tree Ti be σi. Difference between

densities of two trees (σfrac) is defined as follows:

σfrac =
| σ1 − σ2 |
max(σ1, σ2)

∗ 100% (5.12)

2. Maximum Schedule Length (SH) : It is overall schedule length of the network. Let

SHi be schedule length of Tree Ti. Maximum schedule length of network (SH) is

defined as follows:

SH = max(SH1, SH2) (5.13)

3. Difference in Schedule Length (SHfrac) : It indicates how much the schedule lengths

of two trees differ. Difference in schedule length SHfrac is defined as follows:

SHfrac =
| SH1 − SH2 |
max(SH1, SH2)

∗ 100% (5.14)

4. Control Overhead (CO): It is as defined in equation 3.3.

5. Energy Consumption During Control Phase (EC) : It is as defined in equation 3.5.

6. Energy Consumption During Data Phase (ED) :It is as defined in equation 3.7.

77

In next subsection, simulation results for all above parameters are presented. The

SMTLB[38] algorithm is centralized in nature. It is implemented as an application pro-

gram. It is not implemented in NS-2. For SMTLB, results of fractional density difference,

fractional schedule length difference and maximum schedule length are generated. But

results for other parameters are not generated.

Fractional Density Difference, Fractional Schedule Length Difference and Max-

imum Schedule Length

In Figures 5.6a,5.6b and 5.6c the graphs of Fractional Density Difference v/s. Density

Deviation for three cases namely sinks in center, sinks at diagonal corner and sinks near

to each other are shown.

It is seen from the graphs that SLBMHM algorithm minimizes density difference

between two trees compared to other three approaches. In SLBMHM algorithm, when

a sink finds that its schedule length is higher than the balanced schedule length, it asks

nodes belonging to its tree to shift to a different tree. Thus nodes shift from dense region

to sparse region (or dense tree to sparse tree). As a result, density of dense region is

reduced and that of sparse region increases. So, difference in density is reduced.

In SMTLB algorithm, subtrees grow gradually by expanding the least loaded subtree.

This does not guarantee that the densities of trees remain balanced. The same is reflected

in simulation results.

In LBR algorithm, parent selection is done based on ratio of neighbor count of sink

and hop distance from sink. A node joins the sink with the highest ratio. The idea is to

prefer the sink with more number of neighbors so that funneling effect [1] can be avoided.

When two regions are different in density, nodes would prefer to join the sink present in

dense region. Only those nodes which are far away from that sink would prefer to join

the other sink. Thus LBR does not attempt to balance density of trees.

In hop count based approach, every node joins the sink which is at the least hop

distance. When network is dense, more number of nodes are present in a given radius

compared to a sparse network. As hop distance from sink is the only criteria to join the

tree, nodes in dense part of network join the nearest sink and the resulting tree has large

number nodes. Nodes in sparse region of network join the nearest sink resulting in a

small tree. Thus densities of trees remain unbalanced.

78

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 5.6: Dependency of Fractional Density Difference on Density Deviation

79

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 5.7: Dependency of Fractional Difference in Schedule Lengths on Density Devia-
tion

80

As SLBMHM algorithm is able to balance densities of trees, the resulting schedule

lengths are also balanced. As other algorithms do not attempt to balance the densities of

trees, they result in larger difference in schedule lengths of trees. The same is explained

through Figures 5.7a,5.7b and 5.7c. It is also seen from the figures that as density

deviation increases, the difference in schedule lengths increases. This is because increase

in density deviation results in the tree of region 2 becoming denser and so it results in

much higher schedule length than tree of region 1.

In Figures 5.8a,5.8b and 5.8c the graphs of Maximum Schedule Length v/s. Density

Deviation are shown. Here two trees T1 and T2 are formed with schedule lengths SH1

and SH2, respectively. As T2 spans over dense region, SH2 is higher than SH1. The

max. schedule length of the network (SH) is max(SH1,SH2). The SLBMHM algorithm

attempts to reduce SH2 and increase SH1 by performing density balancing i.e. shifting

nodes from T2 to T1. The SH1 is not increased above average schedule length SHbal. As

a result, max(SH1,SH2) goes down and remains around SHbal. Thus, SH is reduced.

As mentioned earlier, other approaches result in high difference in schedule lengths

of the two trees. As a result, maximum schedule length also remains high compared to

SLBMHM algorithm.

For some cases, the performance of SLBMHM is not the best. But still it is almost

near to the other algorithms. Detailed quantitative analysis of results is presented in the

last sub-section of current section.

Control Overhead and Energy Consumption during Control Phase

In Figures 5.9a,5.9b and 5.9c the graphs of Control Overhead v/s. Density Deviation are

shown. It is observed from the graphs that as deviation increases, control overhead also

increases. This is natural because increase in deviation means increase in average density

of entire network. As number of nodes increases, count of control messages also increases.

When parent selection is done based on hop count, control overhead consists of fol-

lowing components:

• HELLO messages flooded by sinks for leveling.

• Control messages generated due to execution of DICA[21] for scheduling & tree

formation. The messages involved are Request, Response, Schedule and Forbid-

81

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 5.8: Dependency of Max. Schedule Length on Density Deviation

82

den. These messages are exchanged between a node doing slot/parent selection and

candidate parents of the same node.

In LBR algorithm, control overhead consists following components.

• HELLO messages flooded by sinks for leveling.

• Every sink floods its neighbor count in the network.

• Control messages generated due to execution of DICA[21] for scheduling & tree

formation.

In SLBMHM algorithm, control overhead consists of following components.

• HELLO messages flooded by sinks for leveling.

• Transmission of JOIN message by every node towards sink.

• Flooding of BAL NOT REQD message from sink with small schedule length in its

tree.

• Flooding of BAL REQD message from sink with large schedule length in its tree.

• Broadcasting of SINK CONFIRM and SINK MODIFIED messages by nodes.

• Control messages due to execution of DICA[21] for scheduling & tree formation.

The hop count based method should result in the least control overhead as it involves

the least number of control messages. The SLBMHM algorithm involves maximum num-

ber of control messages so it should result in highest control overhead. The performance

of LBR should remain between the two. The same is observed from Figures 5.9a,5.9b

and 5.9c except in 5.9c for Figure σ = 6.

Energy consumption during control phase is directly proportional to control overhead.

In Figures 5.10a,5.10b and 5.10c graphs for the same are shown. The nature of the graphs

is same as in Figures Figures 5.9a,5.9b and 5.9c. So, more explanation is not given here.

Detailed quantitative analysis of results is presented in the last sub-section of current

section.

83

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 5.9: Dependency of Control Overhead on Density Deviation

84

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 5.10: Dependency of Energy Consumption during Control Phase on Density De-
viation

85

Sinks in Center
Density Deviation Avg improvement (%) Std. deviation (%)

4 55% 35%
5 35% 17%
6 36% 6%

Sinks at Diagonal Corner
Density Deviation Avg improvement (%) Std. deviation (%)

4 74% 28%
5 13% 1%
6 39% 11%

Sinks Nearby
Density Deviation Avg improvement (%) Std. deviation (%)

4 47% 24%
5 52% 10%
6 40% 10%

Table 5.4: Percentage Improvement in Schedule Length Difference

Energy Consumption During Data Phase

The energy consumption during data phase in all three algorithms namely hop-count,

LBR and SLBMHM remains almost same. The reason is that every node is configured

to generate one packet at every 10 seconds. That is, all the nodes in the network are

generating packets at the same rate. The neighborhood of every node remains same in

all the three algorithms. So, number of children per node are also not likely to change.

Because, all three algorithms use DICA[21] for scheduling & tree formation.

Thus all the nodes generate packets at the same interval. Moreover, in all the three

algorithms, number of packets received by a node does not change. So, energy consumed

during data phase does not vary across the algorithms.

As density deviation increases, the energy consumption is likely to increase in all the

three algorithms.

5.4.4 Quantitative Comparison of Results

In the Tables 5.4 and 5.5 percentage improvement in schedule length difference and max-

imum schedule length respectively are summarized. To calculate improvement for a par-

ticular case, result of SLBMHM algorithm is compared with the second best performing

algorithm for the given case.

It is observed from the Table 5.4 that the average improvement achieved by the

86

Sinks in Center
Density Deviation Avg improvement (%) Std. deviation (%)

4 9% 5%
5 18% 10%
6 20% 1%

Sinks at Diagonal Corner
Density Deviation Avg improvement (%) Std. deviation (%)

4 23% 7%
5 13% 6%
6 20% 7%

Sinks Nearby
Density Deviation Avg improvement (%) Std. deviation (%)

4 14% 2%
5 14% 1%
6 24% 5%

Table 5.5: Percentage Improvement in Maximum Schedule Length

Sinks in Center
Density Deviation Avg increase (%)

3 20%
4 9%
5 7%
6 3%

Sinks at Diagonal Corner
Density Deviation Avg increase (%)

3 19%
4 10%
5 6%
6 4%

Sinks Nearby
Density Deviation Avg increase (%)

3 10%
4 11%
5 5%
6 3%

Table 5.6: Percentage Increase in Energy Consumption during Control Phase

SLBMHM algorithm ranges from minimum 13% to maximum 74%. In some cases, stan-

dard deviation is high. But still subtracting standard deviation from average results in

a meaningful value. As seen from Table 5.5 that improvement in overall schedule length

ranges from 9% to 24%. It means that in every TDMA cycle, schedule length is reduced

by 9% to 24%.

87

It is seen from the Table 5.6 that maximum increase in control energy consumption

is 20%. To calculate percentage increase in energy consumption for a particular case,

result of SLBMHM algorithm is compared with the best performing algorithm for the

given case.

The control phase does not take place very often. Tree formation and scheduling takes

place first time after initial node deployment. Then after, whenever significant number

of new nodes are added or existing nodes die, tree repairing and rescheduling is done.

So, this additional energy consumption does not affect the network life time much. The

reduction in schedule length and schedule length difference is achieved in each TDMA

cycle. So, improvement in packet latency and fairness in transmission opportunity is

ensured during each cycle. In short, this a trade-off between schedule length and energy

consumption.

The SLBMHM algorithm does not achieve improvement in schedule length difference

and maximum schedule length when density deviation is 3. But it results in 20% higher

control energy consumption. When both the regions are equal in average density, the

trees formed through SLBMHM algorithm are different in terms of density. So, their

schedule lengths are very different and overall schedule length also remains higher. As

the SLBMHM algorithm does not result in improvement when density deviation is 3,

corresponding raws are not shown in Tables 5.4 and 5.5.

5.5 Summary

In this chapter, schedule length balancing for multi-sink homogeneous networks is pre-

sented. Many times distribution of nodes is not uniform in the entire region. So some

trees are highly dense and others are sparse. The dense trees result in larger schedule

length than the sparse ones. To reduce overall schedule length, it is required that schedule

lengths should be balanced. Here, a heuristic approach of shifting the nodes from dense

tree to sparse tree is suggested. The proposed approach is evaluated through simulations.

It is observed from simulation results that proposed approach results in better schedule

length balancing than existing algorithms in most of the cases. As a result, overall sched-

ule length also decreases. Thus all the nodes are likely to wait for almost equal number

of time slots to get turn to transmit.

88

Chapter 6

Schedule Length Balancing for

Multi-sink HeTerogeneous networks

(SLBMHT) Algorithm

In the previous chapter, schedule length balancing for multi-sink homogeneous networks

is presented. It was assumed that all nodes are of the same type. But in practice,

network may be heterogeneous. That is, more than one types of nodes may be present

in the network. Earlier it is mentioned that the term ‘Attribute’ has the same meaning

as type. Thus network may have multiple sinks and multiple attributes. In this chapter,

Schedule Length Balancing algorithm for Multi sink HeTerogeneous networks (SLBMHT)

is proposed. The chapter contains assumptions, objectives, steps of algorithm, correctness

proofs and simulation results.

6.1 Motivation

Schedule length balancing for multi-sink homogeneous networks was presented in the pre-

vious chapter. The motivation was that when node distribution is not uniform, schedule

lengths of sink-rooted trees are not balanced. Some method is required to balance the

schedule lengths. This would also reduce the overall schedule length of network.

But it is also possible that network has more than one types of nodes present. So

schedule length depends not only on average density and depth of the tree, but also on

89

types of nodes present. It is shown in Chapter 4 that poor aggregation occurs when

network is highly heterogeneous. Aggregation has direct impact on schedule length. If

aggregation is poor, more packets come out of nodes. So more time-slots are required.

Consider that two trees have same average density and depth. First tree has two types

of nodes (temperature and pressure sensors) and second has four types of nodes (temper-

ature, pressure, solar radiation and moisture sensors). It is likely that second tree would

have larger schedule length than the first tree.

One of the steps in balancing algorithm is estimation of schedule length by sinks. Now

schedule length is function of following three parameters.

1. Average density (σ)

2. Height of tree (h)

3. No. of attributes (γ)

Schedule length imbalance may be caused by non-uniform node distribution or net-

work heterogeneity or both. We need an algorithm which attempts to balance the sched-

ule lengths no matter what is the cause of imbalance. In other words, schedule length

balancing algorithm should consider network heterogeneity also.

6.2 Problem Definition

In Chapter 3, problem definition is presented along with explanation of assumptions

and objectives. It was mentioned that main problem is divided into two sub-problems

: (i) Scheduling & tree formation in single sink heterogeneous networks. (ii) Schedule

length balancing in multi-sink homogeneous networks. The sub-problems are addressed

in Chapters 4 and 5 respectively. In this chapter, we attempt to solve the main problem

i.e. one defined in Chapter 3.

Since problem is already defined in detail in Chapter 3, the explanation is not repeated

here entirely. But problem statement, assumptions and objectives are stated for the sake

of completeness.

90

6.3 Problem Statement

To design a distributed algorithm to balance schedule lengths of sink-rooted trees in

multi-sink heterogeneous sensor networks.

6.3.1 Assumptions

1. One or more sinks are deployed.

2. More than one attributes may be present in the network.

3. Node distribution is not uniform.

4. Every sink is root of exactly one tree.

5. Every node joins exactly one tree. In other words, trees are disjoint.

6. Every packet requires one time-slot.

6.3.2 Objectives

1. Overall schedule length (SH) must be minimized. It is defined in equation 3.1.

2. Difference between schedule lengths of trees should be minimal. It is denoted as

SHdiff . It is defined in equation 3.2

3. Control Overhead (CO) should be minimal. It is defined in equation 3.3.

4. Average Energy Consumption during Control Phase should be minimal. It is de-

noted as EC . It is defined in 3.5.

5. Minimize Average Energy Consumption during Data Phase. It is denoted as ED.

It is defined in 3.7.

6.4 SLBMHT Algorithm

6.4.1 Illustration of the Algorithm with an Example

In Figure 6.1, a sample topology is shown. Nodes 0 to 49 are in region 1. Nodes 50 to

98 are in region 2. Assume that there are two sinks: S1 is node 24 (center node in region

91

Figure 6.1: Illustration of Node Deployment for SLBMHT Algorithm)

Figure 6.2: Illustration of Formation of Temporary Trees in SLBMHT Algorithm

92

1, filled with black color), S2 is node 74 (center node in region 2, filled with black color).

Two types of nodes are present in region 1. Nodes of type 1 and type 2 are filled with

red and yellow color respectively. Four types of nodes are present in region 2. Nodes of

type 1, 2, 3 and 4 are filled with red, yellow, cyan and green colors respectively.

At the beginning of algorithm, S1 and S2 will turn by turn flood HELLO packets in

the network. At the end, every node will know its hop distances from both S1 and S2.

Every node will select the nearest sink (in terms of hop count) as its home sink. Nodes

0 to 49 will join S1. Let us call it Group 1. Nodes 50 to 98 will join S2. Let us call it

Group 2.

Every node in Group 1 and Group 2 will select one node as temporary parent. In

Figure 6.2, formation of temporary trees is shown. All edges are not shown in figure.

Some sample edges are shown to provide better visualization. Now every leaf node in

Group 1 and Group 2 will calculate its neighbor count, depth and also identify its type.

Neighbor count, depth and type are sent as part of JOIN message to temporary parent.

Each node in path will wait for its temporary children to send JOIN message. Once a

node receives JOIN messages from all its temporary children, it will add neighbor counts

received with its own neighbor count. Every non-leaf node maintains a list ‘types’. If

sub-tree rooted at given node has at least one node of type i, node will set types[i] to 1.

Else types[i] is 0. Every non-leaf node will send JOIN message to its parent. The message

will contain total neighbor count, maximum of height values received from children and

list types. Finally S1 and S2 both receive JOIN messages from their temporary children.

Each sink will calculate values of average density, height and type count for respective

tentative trees. Here type count means how many different types of nodes are present in

the tree.

Sink nodes will estimate the schedule lengths of their tentative trees based on average

density, height and type count of the tree. As region 1 has two types of nodes and region

2 has four types of nodes, schedule length of tree rooted at S1 is likely to be less than

that of tree rooted at S2. In scenario of Figure 5.2, schedule lengths were unbalanced

due to difference in density. Here, schedule lengths are unbalanced due to difference in

heterogeneity. Following paragraphs explain balancing method with respect to Figure

6.2.

S1 will flood a message BAL NOT REQD in its tree. S2 will flood BAL REQD

93

message in its tree. S2 estimates the maximum level hbal of its tree to have balanced

schedule length. It will mention the same in the BAL REQD message. Nodes at level

hbal + 1 or higher in tree rooted at S2 should attempt to shift to tree rooted at S1. Other

nodes would not shift.

Every node in Group 1 will broadcast SINK CONFIRM message to tell its neighbors

that it is stick to the old sink. Nodes at the boundary of two subregions (i.e. node

50,57,64,71,78,85,92) are the first ones to hear SINK CONFIRM message from nodes in

Group 1. These nodes will try to switch to S1. Each one of them will estimate the

possible schedule length of S1 if it joins the sink. If estimated schedule length is less than

or equal to balanced schedule length, node would switch to S1. Else it would stick to the

old sink. If a node decides to change the sink, it broadcasts a SINK MODIFIED message

to inform its new home sink to its neighbors. The message contains three fields: ID of

new home sink (i.e. S1), estimated new schedule length of S1 and flag sink changed.

If node has changed the sink, it will set ID of new home sink to 24 (i.e. S1) and flag

sink changed would be set to 1.

For example, let us assume that node 71 switches to S1. It will estimate the new

schedule length of S1 considering that itself joins S1. Consider that original schedule

length of S1 is 10. Node 71 is four hops away from S1. In neighborhood of 71, no node

is at distance four from S1. Node 71 is of type 1. Towards S1, the nearest node of type

1 is node 27. Node 27 is one hop away from node 71. So packet generated by 71 will be

aggregated at node 27. So the packet will not consume any additional slots during its

journey to S1. So if node 71 joins the tree of S1, new schedule length of S1 will be 10

(original schedule length of tree rooted at S1) + 0 (no. of neighbors of node 71 switched

to S1 and at the same hop distance as node 71 from S1) + 1 (distance from node 71 to

nearest node of type 1 towards S1) = 11. If estimated schedule length (i.e. 11) is less

than balanced schedule length, node 71 would decide to switch to S1. It would broadcast

In SINK MODIFIED message with sink changed set to 1. The message will contain new

estimated schedule length of S1 i.e. 11.

Consider node 72. It is five hops away from S1. It receives SINK MODIFIED message

from 71. Node 71 is four hops away from S1. Node 72 knows that if 71 joins S1,

the resulting schedule length is likely to be 11. Assume that there are two nodes in

neighborhood of node 72 which are at five hop distance from S1 and have switched to S1

94

(these nodes are not shown in figure). Node 72 is of type 2. The nearest node of type 2

towards sink 1 is node 26. It is three hops away from node 72. Node 72 estimates new

schedule length of S1 as 11 (as received from 71) + 2 (two neighbors at the same level

as itself from S1 who have switched to S1) + 3 (distance from node 12) = 16. If this

estimated value is less than balanced schedule length, node 72 will switch to S1. Else it

will stick to S2. The last term in sum indicates that packet generated by node 72 will

travel three hops before it gets aggregated. Thus three extra slots should be added in the

schedule length of S1.

In this example, node 72 is at hop distance five from S1. In its neighborhood, there is

only one node (node 71) at distance four from S1. There may be multiple nodes at level

four in neighborhood of node 72. So node 72 may receive multiple SINK MODIFIED

messages. In that case, it will use maximum of received values of schedule estimate in its

calculation (i.e. first term in sum) of new schedule of S1.

Switching process would start from border of two regions. It would progress from

border to left i.e. towards S2. Slowly nodes in left side would switch to S1. As we move

towards left boundary of region 2, chances of node switching to S1 gets reduced. Because,

as distance from S1 increases, the estimated schedule length (if node switches to S1)

increases. When estimated schedule length starts approaching balanced schedule length,

switching process stops. Thus it is ensured that schedule length of S2 decreases, but

that of S1 does not cross balanced schedule length. Once switching process is complete,

scheduling & tree formation proposed in AAJST would be executed.

6.4.2 Flow Diagram of the Algorithm

The proposed algorithm is explained through flow diagrams in Figures 6.3 and 6.4. The

figures are self-explanatory. First the steps of Figure 6.3 are executed. Then steps

mentioned in Figure 6.4 are executed. Details are not mentioned in flow diagram. But it

helps the reader to understand overall approach.

6.4.3 Steps of the Algorithm

In this subsection, steps of SLBMHT algorithm are explained. Working of SLBMHT

algorithm is similar to SLBMHM algorithm discussed in Chapter 5. Only the steps

95

Figure 6.3: Flow Diagram of SLBMHT Algorithm - Part I

Parameter Meaning
nbc No. of neighbors
tnbri Type of neighbor node i
< tnbr > Vector storing types of neighbors
types It is a vector present in JOIN message.
γi No. of attributes present in tree rooted at sink Si

Table 6.1: Additional Notations used in SLBMHT algorithm

different than SLBMHM are explained in detail. Notations used in explanation are same

as mentioned in Table 5.1. In Table 6.1, additional notations introduced in SLBMHT are

explained.

Steps of proposed algorithm are explained below.

1. Flooding of HELLO packets and leveling of nodes:

The step is same as in SLBMHM except that now HELLO packet also contains

a field ‘type’. Types are numbered. For example, temperature is numbered 1,

pressure is numbered 2, and so on. The node which broadcasts HELLO packet sets

96

Figure 6.4: Flow Diagram of SLBMHT Algorithm - Part II

type to appropriate number representing its type. This helps every node to know

type for each neighbor.

Now every node maintains an additional vector < tnbr > = tnbr1 , tnbr2 ,.....,tnbrnbc.

2. Formation of temporary trees:

The step is same as in SLBMHM.

3. Estimation of schedule length by every sink: Following steps are executed so that

every sink could estimate schedule length of its temporary tree.

(a) Every leaf node will send a JOIN message to temporary parent. Format of

JOIN message is same as SLBMHM except that now it contains ‘type’ field.

Every leaf node writes number corresponding to its type in JOIN.

(b) Every non-leaf node at level h will wait to hear JOIN messages from its neigh-

bors at level (h+ 1). Once it hears JOIN messages from all neighbors at level

97

(h+ 1), it sends a JOIN message to its temporary parent.

Information present in JOIN is same as that in SLBMHM except addition

of new vector ‘types’. JOIN message sent by non-leaf node contains following

information. If a node of type j is present in tentative sub-tree rooted at given

node, types[j] is set to 1. Else it is 0.

(c) At the end of above step, every sink Si receives JOIN messages from its tem-

porary children. Every sink is able to calculate the following parameters about

its temporary tree.

i. Height (hi) of the tree.

ii. Average density (σi). It is ratio of total neighbor count and total node

count.

iii. No. of attributes present (γi). If region has four types of nodes present,

γi = 4.

iv. Estimated Schedule length (SHest
i). It is the estimate of schedule length

of temporary tree rooted at Si. It is function of σi, hi and γi. It is derived

by putting values of σi, hi and γi in Equation 6.6. Detailed explanation

about schedule length estimation is given later in the chapter.

(d) Sinks exchange estimated schedule lengths and find average schedule length.

It is referred as ‘balanced schedule length’, denoted as SHbal.

4. Schedule length balancing: Following steps are performed for schedule length bal-

ancing.

(a) If sink Si finds that SHest
i is greater than SHbal, it attempts to remove some

nodes from its tree. It sends BAL REQD message in its tree to inform the

nodes in its tree that balancing is required. Else it sends BAL NOT REQD

message in the tree.

(b) As part of BAL REQD message, sink Si sends following parameters:

i. Estimated schedule lengths SHest
1 ,SHest

2 ,....,SHest
N .

ii. Balanced schedule length (SHbal).

98

iii. Required height (hbali) of the tree rooted at sink Si to achieve balanced

schedule length. The value of hbali is calculated by putting SHbal, average

density σi and no. of attributes γi of the tree in Equation 6.6. Sink

indicates that all the nodes in its tree at a level greater than hbali should

attempt to switch to a different tree.

(c) If a node whose temp home sink is Si receives BAL NOT REQD message from

Si, it confirms attachment to sink Si by broadcasting SINK CONFIRM mes-

sage.

(d) If a node whose temp home sink is Si receives BAL REQD message from Si,

it will broadcast SINK MODIFIED message with sink changed flag set to 0 if

di is less than or equal to hbali .

(e) In the above case, if di is greater than hbali , following steps are executed to

change home sink.

i. Wait for neighbors belonging to sinks having schedule length less than

that of Si to finalize their sinks either by deciding to stick with same sink

or changing to new sink. Then following steps are performed.

ii. Create a set of target sinks. A sink Sj is member of the set if following

two conditions are satisfied: (i) Schedule length of Sj is less than balanced

schedule length. (ii) At least one node is present in neighborhood of given

node which belongs to Sj and is nearer to Sj compared to given node. If the

set is empty, node keeps waiting. When it overhears a SINK MODIFIED

message (described later), it tries to create the set again. If set is non-

empty, following steps are performed.

iii. Assume that Z sinks are present in the set of target sinks. The set is

denoted at tgt sinks. If sink Sj is present in set tgt sinks, its current

schedule length is denoted SHcest
j .

• SHcest
j is same as SHest

j if node is one hop away from a node whose

temp home sink is Sj.

• Otherwise SHcest
j is set as follows. Given node is more than one hops

away from node(s) whose temp home sink is Sj. But still Sj is in

set Z. It means some neighbor has switched to Sj. When a node

99

switches to new sink, it broadcasts SINK MODIFIED message with

sink changed flag set to 1. In addition, it also writes new estimated

value of SHcest
j in the message. Given node may overhear many such

messages. It sets SHcest
j to the maximum of received values of SHcest

j .

iv. Node estimates new schedule length of every sink Sj in set tgt sinks con-

sidering that it would switch to the sink. Number of neighbors who belong

or switched to sink Sj be nbr switchedj. Then new value of SHest
j is es-

timated as follows:

SHcest
j = SHcest

j + nbr switchedj + aggr dist (6.1)

Above equation is similar to equation 5.1 except that here last term is

aggr dist, not ‘1’. Network is heterogeneous. So given node should also

consider the distance at which its packet will get aggregated. Suppose

aggr dist is 4. It means that the nearest node of same type as given

node is at hop distance 4. So packet generated by given node can not be

aggregated before 4 hops. At each hop, packet would consume one slot.

Thus 4 slots are added in the schedule length if given node switches to

tree of Sj. In homogeneous network, packet would be aggregated at next

hop itself. So, aggr dist was 1 in equation 5.1.

v. Node updates SHcest
j for each sink Sj in set tgt sinks. It decides to shift

to sink Sk whose SHcest
k minimum and is less than SHbal. If no such sink

is found, node sticks to current sink and broadcasts SINK MODIFIED

message with flag sink changed set to 0.

vi. When node decides to switch to sink Sj, it broadcasts SINK MODIFIED

message. The message has sink changed flag set to 1. The message

notifies the neighbors about node’s decision. The message also contains

latest value of SHcest
j so that neighbors could update their estimates of

SHcest
j .

5. Once every node finalizes the sink, scheduling and tree formation algorithm AAJST

as proposed in Chapter 4 is executed. Every node selects a slot and parent. Thus

at the end, N different trees are formed. Every tree is rooted at one sink.

100

6.4.4 Correctness of the Algorithm

Lemma 6.4.1. In heterogeneous network, schedule length (SH) of a tree depends on it’s

avg. density (neighbor count, σ), height (h) and count of types of nodes (γ) .

Proof. This lemma is similar to Lemma 5.3.1. So most of the explanation is repeated.

Explanation related to average density (σ) and height (h) is same as given in Lemma

5.3.1. But it is presented here for the sake of completeness.

For collision-free schedule formation, it is required that transmission slot selected by

given node should be such that it does not create interference at neighboring nodes.

Suppose number of neighbors of node n is nc. Each one of nc neighbors is receiving in

certain slot. Thus node n can not transmit in those nc slots. The slot selected by n

should be different than those nc slots. If network is dense, value of nc would be high. If

network is sparse, nc would be low. Thus in a dense network, number of slots consumed

are more compared to sparse network.

Slot assignment should be bottom-up in aggregated convergecast. That is, slot assign-

ment should progress from leaf to root. Leaf node(s) should be assigned lowest timeslot.

Time slots increase from leaf to root. This criteria is essential for aggregation freshness

i.e. parent could aggregate children’s packets in the same TDMA cycle and transmit

further. Otherwise parent would receive packets from children in one TDMA cycle and

could forward in next TDMA cycle. If tree height is more, leaf is far from root. So more

slots are required to reach the root. This in turn means that if height increases, schedule

length increases.

In raw convergecast, scheduling need not be bottom to top. But every node has to

forward all the packets coming from children node. If leaf node is far from root, its packet

has to travel longer path to root. At each hop, packet needs one time-slot. So as distance

from root increases, number of required time slots also increases.

In heterogeneous networks, more than one types of nodes are present. It is explained

in Chapter 4 that quality of aggregation deteriorates with increase in heterogeneity. If

aggregation becomes poor, number of packets forwarded by nodes increases. Thus number

of slots required to transmit (and also to receive) those packets increases. In short,

schedule length increases. In other words, two trees may have same density and depth.

But if their degree of heterogeneity is different, their schedule lengths would be different.

101

In case of raw convergecast, every node sends out all packets coming from children nodes.

So change in degree of heterogeneity has no special effect on schedule length in raw

convergecast.

Thus from above discussion it is clear that schedule length in aggregated converge-

cast depends on average density, tree height and degree of heterogeneity. But in raw

convergecast, important factors are average density and height of the tree.

Lemma 6.4.2. SLBMHT algorithm ensures that every node has at least one path to the

sink.

Proof. Proof is same as Lemma 5.3.2.

Lemma 6.4.3. SLBMHT algorithm reduces schedule length of overloaded sink(s) without

increasing schedule length of underloaded sink(s) beyond average.

Proof. Proof is same as Lemma 5.3.3.

Lemma 6.4.4. If schedule lengths of trees are balanced, maximum schedule length of

the network is also reduced. Thus average number of slots before a node gets its turn to

transmit also gets balanced.

Proof. Proof is same as Lemma 5.3.4.

6.4.5 Schedule length (SH) as function of Average Density (σ),

height (h) and No. of Attributes (γ)

It is mentioned in proposed algorithm that every sink estimates schedule length (SH) of

its temporary tree based on following parameters: average density (σ) of the tree, height

(h) of the tree and number of attributes (γ) present in the tree. To establish relationship

between SH, σ, h and γ, a simulation based study is carried out as follows.

Single sink network is considered. Different combinations of density, depth and het-

erogeneity are tried. Following values of densities are used: σ1 = 4, σ2 = 8, σ3 = 12 and

σ4 = 20. For each σi, height (h) is varied from 2 to 20. For each combination of σ and h,

γ is varied between 1,2,4 and 6. If γ is 4, it means that four different types of nodes are

present.

102

Graphs of Schedule length v/s. Depth are plotted for fixed σ and γ = 1,2,4 and 6.

Thus on a single XY plane, there are four graphs (one for each value of γ). For given σ

and γ, schedule length linearly increases with h. It can be expressed as follows:

SH = m ∗ h (6.2)

In above equation, m is slope of line. As SH is function of σ,γ and h, m should be

replaced by some formula containing σ and γ. It is achieved through following steps.

As the first step, graphs of Slope (m) v/s. No. of Attributes (γ) are plotted for

different values of σ. It is found that m linearly increases with γ. Following is the general

equation for m:

m = m1 ∗ γ + c (6.3)

Here m1 is slope of line. Value of c represents the point where line crosses Y axis.

Both m1 and c are linear functions of σ. They are as follows:

m1 = 0.2 ∗ σ − 0.13 (6.4)

c = 0.45 ∗ σ − 0.8 (6.5)

Using equations 6.4 and 6.5 in equation 6.3, equation for m would be found. Replacing

m in equation 6.2, an equation of following form is expected.

SH = p ∗ σ ∗ γ ∗ h− q ∗ γ ∗ h+ r ∗ σ ∗ h− v ∗ h (6.6)

In equation 6.6 above, values of p,q,r and v are 0.2,0.13,0.45 and 0.8 respectively. The

values of σ used are from 4 to 20,height h is between 2 to 20 and γ is between 1 to 6.

Every sink knows average density (σ), height (h) and number of attributes (γ) for its

tentative tree. So above equation can be used by a sink to estimate schedule length of

its tree.

103

6.5 Simulation Results

In this section, simulation results are discussed. Details of simulation setup, other pro-

tocols used for comparison and different performance parameters are also discussed.

6.5.1 Simulation Design

Different sink deployments are illustrated in Figures 5.5a, 5.5b and 5.5c. The same

deployments are used here also. There are two sinks: S1 and S2. The sink deployments

are listed below:

1. Sinks are in center of each sub-region (Figure 5.5a).

2. Sinks are at opposite diagonal corners (Figure 5.5b).

3. Sinks are near to each other (Figure 5.5c).

The three cases differ only in sink placements. Else they are same. Common details

are presented next. A square region of 400 meters x 200 meters is used for simulation. It is

divided into a grid of 40 x 20 points. Distance between any two horizontal or vertical grid

points is 10 meters. The whole region is divided into two sub-regions. Each sub-region

is of size 200 meters x 200 meters. Every region contains one sink.

In region 1, probability of node being deployed at a grid point is 0.3. The probability

of being deployed at a grid point in region 2 is 0.5. Let us denote number of different

attributes present in region i by NA
i . Here NA

1 is 2. That is, two different types of nodes

are deployed in region 1. From one simulation run to other, NA
2 is varied between 2,4,6

and 8.

Probability (pjk) that a node j is present in region i is assigned type k is defined as

follows:

pjk =
1

NA
i

, k = 1, 2, 3, ..., NA
i (6.7)

Table 6.2 summarizes attribute assignment in both the regions. The four rows of

Table 6.2 present four different scenarios. In the first scenario both the regions have

same number of attributes (i.e. 2). But gradually degree of heterogeneity in region 2 is

increased from 2 to 8. As heterogeneity increases, schedule length of region 2 will increase.

104

Scenario NA
1 NA

1 Hd

1 2 2 1
2 2 4 2
3 2 6 3
4 2 8 4

Table 6.2: Heterogeneity in two regions

Node distribution remains same across all scenarios. The last column is Heterogeneity

Difference (Hd). It is defined as follows:

Hd =
NA

2

NA
1

(6.8)

As mentioned in above equation, Heterogeneity Difference is the ratio of no. of at-

tributes in region 2 and region 1. It is natural that as degree of heterogeneity of region

2 increases, heterogeneity difference increases.

The SLBMHT algorithm is evaluated with respect to different performance param-

eters. These parameters are mentioned in next sub-section. But for every parameter,

performance is evaluated against variation in Hd. So, X-axis is labeled as Heterogeneity

Difference (Hd) in all graphs of simulation results.

There are three different sink deployments. For each deployment, there are four dif-

ferent attribute distribution scenarios as mentioned in Table 6.2. Node distribution is

same in all scenarios as mentioned earlier. Performance of SLBMHT is evaluated for

each combination of sink deployment and attribute distribution scenario. For a specific

sink deployment, four different instances of each attribute distribution scenario are ran-

domly generated. So, each point in graph is an average of four different simulation runs.

Corresponding standard deviation is also calculated and plotted as error bar.

6.5.2 Simulation Setup

Simulation setup is same as mentioned in Table 5.3. So details are not repeated here.

6.5.3 Discussion of Results

We have compared proposed algorithm with different existing algorithms. They are same

as those used for evaluating SLBMHM. For the sake of completeness, list of algorithms

105

used for comparison is given below.

1. Hop count based approach.

2. LBR (Load Balanced Routing)[34].

3. SMTLB (Spanning Multi Tree Load Balanced routing) [38].

The hop count based approach and LBR use DICA EXTENSION (mentioned in

Chapter 4) for slot and parent selection. In SMTLB algorithm, single parent is selected.

But as given node may have multiple outgoing packets, multiple slots are selected to

transmit to the same parent. The SLBMHT use AAJST (as proposed in Chapter 4) for

scheduling & tree formation.

Performance Measures

The performance measures are same as used for multi-sink homogeneous networks. So,

they are not explained in detail but listed below for the sake of completeness. Number

of nodes is denoted by n.

1. Maximum Schedule Length (SH) : It is defined in equation 5.13.

2. Difference in Schedule Length (SHfrac) : It is defined in equation 5.14.

3. Control Overhead (CO): It is as defined in equation 3.3.

4. Energy Consumption During Control Phase (EC) : It is as defined in equation 3.5.

5. Energy Consumption During Data Phase (ED) :It is as defined in equation 3.7.

As explained in simulation design, the network has two regions. Each region has one

sink. Let us denote the tree rooted at sink S1 as T1. Tree rooted at sink S2 be denoted

as T2. The schedule lengths of T1 and T2 be SH1 and SH2. Maximum schedule length of

the entire network be SH. As defined earlier also, SH = max(SH1,SH2).

Like in Chapter 5, SMTLB algorithm is implemented as an application program. So,

results for total transmission slots, control overhead, energy consumption during control

phase and data phase are not generated for SMTLB.

106

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 6.5: Dependency of Fractional difference in Schedule Lengths on Heterogeneity
Difference

107

Fractional Schedule Length Difference and Maximum Schedule Length

In Figures 6.5a,6.5b and 6.5c, the graphs of Fractional difference in Schedule lengths

v/s. Heterogeneity Difference for three cases namely sinks in center, sinks at diagonal

corner and sinks near to each other are shown. It is seen that as Heterogeneity Difference

increases, difference between SH1 and SH2 increases. As explained earlier, region 1 has

two different types of nodes but types of nodes in region 2 is varied between 2,4,6 and

8. Thus increase in Heterogeneity Difference means degree of heterogeneity increases in

region 2. It is shown in Chapter 4 that as heterogeneity increases, aggregation becomes

poor. Thus nodes require more transmission slots. As a result, schedule length increases.

As heterogeneity of region 2 is increases, SH2 increases. The degree of heterogeneity

of region 1 is not varied. So, SH1 does not vary with heterogeneity difference. Thus

difference between SH1 and SH2 increases.

It is also seen that SLBMHT algorithm results in least schedule length difference

compared to other approaches. The SLBMHT algorithm is aimed at balancing schedule

lengths of both the trees. In this case, SH2 is higher than SH1. So nodes belonging to

tree T2 shift to the tree T1. So schedule length of tree T1 goes up and that of T2 goes

down. But the resulting values are near to average of original schedule lengths.

As explained earlier, in SMTLB algorithm, subtrees grow gradually by expanding the

least loaded subtree. Number of sinks are two. But number of sub-trees are likely to be

more than two because every sink may have number of neighbors. Each such neighbor

is root of one sub-tree. SMTLB works in top-down manner. That is, parent selection

proceeds from sink to leaf nodes. SMTLB is not designed for heterogeneous networks.

Unlike in heterogeneous networks, every node just selects a single parent and multiple

slots instead of multiple slot/parent pairs. All packets are sent via the same parent. As

a result, aggregation remains poor. So, more time slots are required. Thus SMTLB is

not taking heterogeneity into account. So trees T1 and T2 both result in higher schedule

lengths and their schedule lengths are also not balanced.

In LBR algorithm, parent selection is done based on ratio of neighbor count of sink

and hop distance from sink. A node joins the sink with the highest ratio. The idea is to

prefer the sink with more number of neighbors so that funneling effect [1] can be avoided.

When two regions are different in density, nodes would prefer to join the sink present in

108

dense region. Only those nodes which are far away from that sink would prefer to join

the other sink.

In our simulation setup, region 2 has slightly higher density compared to region 1. So

nodes of region 2 would join the tree rooted at S2. Even the nodes of region 1 for whom

ratio of neighbor count of sink and hop distance from sink remains higher for sink 2 will

also join tree rooted at sink 2. Thus more nodes would join T2. In addition, region 2 has

four different types of nodes present. So, SH2 will remain higher than SH1. Thus LBR

algorithm is not able to balance the schedule lengths.

In hop count based approach, every node joins the sink which is at the least hop

distance. When network is dense, more number of nodes are present in a given radius

compared to a sparse network. As hop distance from sink is the only criteria to select the

tree, nodes in dense part of network join the nearest sink S2 and the resulting tree has

large number nodes. Nodes in sparse region of network join the nearest sink S1 resulting

in a small tree. Here not only region 2 has more number of nodes compared to region 1

but it has more types of nodes. So, again SH2 remains higher than SH1. So, hop count

based approach also is not able to balance the schedule lengths.

In Figures 6.6a,6.6b and 6.6c, the graphs of Max. Schedule Length v/s. Heterogeneity

Difference for three cases namely sinks in center, sinks at diagonal corner and sinks near to

each other are shown. As mentioned earlier, max. schedule length SH is max(SH1, SH2).

SLBMHT algorithm is able to balance SH1 and SH2 by reducing SH2 and increasing

SH1 such that SH1 does not go beyond SHbal. As a result, max(SH1, SH2) goes down

and so SH. As other approaches are not able to balance SH1 and SH2, they are expected

to result in higher max. schedule length compared to SLBMHT algorithm. As difference

in schedule lengths increases with increase in heterogeneity difference, max. schedule

length also increases with heterogeneity difference.

As shown in Figures 6.6a and 6.6b, the SLBMHT algorithm results in smallest schedule

length compared to other approaches. It is seen from Figure 6.6c that performance of LBR

is better than SLBMHT. The SLBMHT performs better than the other two algorithms.

Detailed discussion about quantitative comparison of the results is given in the last sub-

section.

109

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 6.6: Dependency of Max. Schedule Length on Heterogeneity Difference

110

Control Overhead and Energy Consumption during Control Phase

In Figures 6.7a,6.7b and 6.7c, the graphs of Control Overhead v/s. Heterogeneity Differ-

ence are shown. It is observed from the graphs that as heterogeneity difference increases,

control overhead also increases. This is natural because increase in heterogeneity differ-

ence means increase in heterogeneity of region 2. As heterogeneity increases, aggregation

becomes poor. The nodes require more time slots. Thus the control messages required

for selection of slot and parent also increase. As a result, control overhead increases.

When parent selection is done based on hop count, control overhead consists of fol-

lowing components:

• HELLO messages flooded by sinks for leveling.

• Control messages generated due to execution of DICA[21] for scheduling & tree

formation. The messages involved are Request, Response, Schedule and Forbid-

den. These messages are exchanged between a node doing slot/parent selection and

candidate parents of the same node.

In LBR algorithm, control overhead consists following components.

• HELLO messages flooded by sinks for leveling.

• Every sink floods its neighbor count in the network.

• Control messages generated due to execution of DICA[21] for scheduling & tree

formation.

In SLBMHT algorithm, control overhead consists of following components.

• HELLO messages flooded by sinks for leveling.

• Every node broadcasts a message containing its type and types of its one hop

neighbors.

• Transmission of JOIN message by every node towards sink.

• Flooding of BAL NOT REQD message from sink with small schedule length in its

tree.

111

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 6.7: Dependency of Control Overhead on Heterogeneity Difference

112

• Flooding of BAL REQD message from sink with large schedule length in its tree.

• Broadcasting of SINK CONFIRM and SINK MODIFIED messages by nodes.

• Control messages due to execution of AAJST for scheduling & tree formation.

The hop count based method should result in the least control overhead as it involves

the least number of control messages. The SLBMHT algorithm involves maximum num-

ber of control messages so its should result in highest control overhead. The performance

of LBR should remain between the two. It seen from Figure 6.7c that control overhead of

SLBMHT is slightly more compared to other two algorithms. In Figures 6.7a and 6.7b,

control overhead of SLBMHT remains less than that of LBR. The explanation is given

below.

The control overhead consists of following two components: (i) Messages required for

schedule length balancing (i.e JOIN, BAL REQD, BAL NOT REQD) (ii) Messages used

during scheduling & parent selection (i.e. REQUEST, REPLY, SCHEDULE, FORBID-

DEN). The SLBMHT algorithm not only shifts nodes from tree T2 to T1, but also uses

AAJST algorithm during slot and parent selection. As AAJST algorithm does parent

selection based on type of the outgoing packet, it schedules the tree using less number

of slots compared to DICA EXTENSION. In contract, LBR and hop-count based ap-

proaches use DICA EXTENSION for scheduling and tree formation. As a result, they

need more number of transmission slots compared to SLBMHT.

Thus, SLBMHT may require additional messages for balancing, but number of re-

quired slots are less. The corresponding control messages are also reduced. As a result,

the overall control overhead remains less than that of LBR.

Energy consumption during control phase is directly proportional to control overhead.

In Figures 6.8a,6.8b and 6.8c, the graphs for the same are shown. The nature of the graphs

is same as in Figures 6.7a,6.7b and 6.7c. So, more explanation is not given here.

It is seen from Figure 6.8c that SLBMHT algorithm results in energy consumption

near to that of hop-count based approach. For the other two figures, energy consumption

of SLBMHT is higher. Detailed discussion about quantitative comparison of the results

is given in the last sub-section.

113

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 6.8: Dependency of Energy Consumption during Control Phase on Heterogeneity
Difference

114

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 6.9: Dependency of Total Slots on Heterogeneity Difference

115

(a) Sinks are at center in each sub-region

(b) Sinks are at diagonal corner in each sub-region

(c) Sinks are nearby

Figure 6.10: Dependency of Energy Consumption per Duty Cycle on Heterogeneity Dif-
ference

116

Total Slots and Energy Consumption During Data Phase

In Figure 6.9a, 6.9b and 6.9c, the graphs for Total slots v/s. Heterogeneity Difference are

shown. It is seen that as heterogeneity difference increases, total slots increases. Here

total slots means count of all the slots used to schedule the tree. It is different than

schedule length. Due to spatial slots reuse, schedule length is less than total number of

slots.

As mentioned earlier, increase in heterogeneity difference means increase in hetero-

geneity level of region 2. As region 2 becomes more and more heterogeneous, aggregation

becomes poor. More slots are required to schedule the nodes. Thus the count of total

slots increases with increase in heterogeneity difference.

The SLBMHT algorithm performs schedule length balancing as well as attribute aware

scheduling & parent selection. Whereas other two algorithms use DICA EXTENSION

for scheduling. So, SLBMHT schedules the nodes in smaller number of slots compared

to the other two algorithms.

In Figure 6.10a, 6.10b and 6.10c, the graphs for Energy Consumption per Duty Cycle

v/s. Heterogeneity Difference are shown. The duty cycle means one TDMA frame.

Energy consumption during data phase is sum of total energy consumed during all the

frames.

Energy consumed per duty cycle is directly proportional to number of slots used to

schedule the network. If a node is assigned more number of slots, it will result in more

energy consumption. As heterogeneity difference increases, aggregation becomes poor.

So, more number of slots are required per node. Thus energy consumption also increases.

It is explained through Figures 6.9a,6.9b and 6.9c that the SLBMHT algorithm results

in less number of slots than other algorithms. As a result, energy consumption per duty

cycle is also less compared to the other three algorithms. Detailed discussion about

quantitative comparison of the results is given in the last sub-section

6.5.4 Quantitative Comparison of Results

In the Tables 6.3 and 6.4 percentage improvement in schedule length difference and

maximum schedule length respectively are summarized. To calculate improvement for a

particular case, result of SLBMHT algorithm is compared with the second best performing

117

Sinks in Center
Hetero. Deviation Avg improvement (%) Std. deviation (%)

3 22% 14%
4 56% 8%
5 43% 2%
6 39% 1%

Sinks at Diagonal Corner
Hetero. Deviation Avg improvement (%) Std. deviation (%)

3 -52% -8%
4 14% 5%
5 14% 4%
6 11% 11%

Sinks Nearby
Hetero. Deviation Avg improvement (%) Std. deviation (%)

3 53% 40%
4 30% 23%
5 18% 17%
6 34% 12%

Table 6.3: Percentage Improvement in Schedule Length Difference

Sinks in Center
Hetero. Deviation Avg improvement (%) Std. deviation (%)

3 8% 3%
4 16% 7%
5 20% 2%
6 14% 7%

Sinks at Diagonal Corner
Hetero. Deviation Avg improvement (%) Std. deviation (%)

3 -3% 9%
4 10% 7%
5 6% 19%
6 2% 26%

Sinks Nearby
Hetero. Deviation Avg improvement (%) Std. deviation (%)

3 0% 4%
4 -13% 11%
5 -3% 14%
6 -5% 10%

Table 6.4: Percentage Improvement in Maximum Schedule Length

algorithm for the given case.

It is observed from the Table 6.3 that the SLBMHT algorithm performs quite well

when sinks are in center of sub-regions. The average improvement achieved by the

118

Sinks in Center
Hetero. Deviation Avg increase (%)

3 2%
4 14%
5 13%
6 14%

Sinks at Diagonal Corner
Hetero. Deviation Avg increase (%)

3 2%
4 15%
5 14%
6 17%

Sinks Nearby
Hetero. Deviation Avg increase (%)

3 14%
4 16%
5 15%
6 15%

Table 6.5: Percentage Reduction in Energy Consumption during Data Phase

Sinks in Center
Hetero. Deviation Avg increase (%)

3 5%
4 1%
5 1%
6 1%

Sinks at Diagonal Corner
Hetero. Deviation Avg increase (%)

3 7%
4 2%
5 1%
6 4%

Sinks Nearby
Hetero. Deviation Avg increase (%)

3 1%
4 1%
5 1%
6 1%

Table 6.6: Percentage Increase in Energy Consumption during Control Phase

SLBMHT algorithm ranges from minimum 22% to maximum 56%. When sinks are at

diagonal corner or nearby, standard deviation in percentage improvement is high in some

cases such that the difference between average value and standard deviation results in a

119

small value. So, the confidence in improvement is low in such cases.

When sinks are at diagonal corner, the distance of nodes belonging to tree T2 from

sink S1 is more compared to the case when sinks are in center. Moreover, as per equation

6.1, new estimated schedule length of T1 would also depend on aggr dist i.e. the shortest

distance at which the packet generated by given node would be aggregated in its journey

towards S1. The term may be assuming large values for some nodes. Due to these

reasons, for many nodes of T2, new estimated schedule length must be remaining greater

than balanced schedule length. So, such nodes do not switch to tree T1. As a result, the

SLBMHT algorithm is not able to reduce the schedule length difference when sinks are

at diagonal corner.

When sinks are nearby, it is likely that there would very less nodes of tree T2 at a

distance greater than hbal2 such that they are not far from sink S1. In addition, the term

aggr dist as mentioned above may be a reason of new estimated schedule length being

greater than balanced schedule length. So, enough nodes do not switch to tree T1. As a

result, the SLBMHT algorithm is not able to reduce the schedule length difference when

sinks are nearby.

It is seen from Table 6.4 that improvement in overall schedule length ranges from

8% to 20% when sinks are in center. When sinks are at diagonal corner, high standard

deviation implies little confidence in the average value. When sinks are nearby, average

values are negative. As seen from graphs of Figure 6.6, the LBR performs better than

the SLBMHT algorithm when sinks are nearby. The negative numbers indicate the

improvement achieved by LBR compared to the SLBMHT algorithm.

The reason of no or little improvement in schedule length when sinks are at diagonal

corner or nearby is that in such cases the SLBMHT algorithm is not able to balance the

schedule lengths. In addition, many times due to racing conditions, node has to try for

higher slot to form collision-free schedule. As a result, the highest slot number may be

a large value. So, schedule length remains high. Still the results for total transmission

slots as in Figure 6.9 indicates that the SLBMHT results in improvements total slots used

to schedule the entire network. The result is seen in terms energy savings during data

transfer phase.

Thus from Tables 6.3 and 6.4, it can be concluded that the SLBMHT algorithm results

in considerable improvement compared to other three algorithms when sinks are in center

120

of each sub-region. But for the other two sink placements, the performance improvement

is not guaranteed.

In Table 6.5, percentage improvement in energy consumption during data phase as

achieved by the SLBMHT algorithm is summarized. It results in 2% to 17% improvement

across all three sink placements. The main reason is that due to usage of AAJST for

scheduling & parent selection, aggregation is improved. As a result, less number of

transmission slots are needed. So, less energy is consumed.

In Table 6.5, percentage increase in energy consumption during control phase as

achieved by the SLBMHT algorithm is summarized. The maximum increase is 7%. As

already mentioned, the improvement in energy consumption during data phase is between

2% to 17%. The control phase does not take place too often. It takes place after many

cycles of data phase. Thus the increase in energy consumption during control phase in

balanced by savings in energy consumption during data phase. As a result, network

lifetime is going to increase.

6.6 Summary

In this chapter, schedule length balancing for multi-sink heterogeneous sensor networks

is presented. The proposed algorithm is able to balance the schedule lengths of trees

when nodes are not uniformly distributed or when different regions have different levels

of heterogeneity. It is shown through simulation results, that proposed algorithm results

in smaller overall schedule length compared to other algorithms. As less number of slots

are required to schedule the network, energy consumption during data transmission phase

is also reduced. The proposed algorithm results in more control overhead as additional

messages are required for balancing. But the control phase takes place after long time-

intervals. So, energy consumption during control phase may be balanced by energy

savings during data phase.

121

Chapter 7

Conclusion & Future Work

In this chapter, concluding comments about the work done is given. Some future research

directions are also mentioned.

7.1 Conclusion

We have proposed following algorithms: (i) AAJST (Attribute Aware Joint Scheduling &

Tree Formation) for single-sink heterogeneous networks. (ii) SLBMHM (Schedule Length

Balancing for Multi-sink HoMogeneous networks) (iii) SLBMHT (Schedule Length Bal-

ancing for Multi-sink HeTerogeneous networks).

The AAJST algorithm is based on the idea of selecting parent considering the type of

packet to be forwarded. It results in better aggregation compared to DICA EXTENSION.

As aggregation is improved, less number of packets flow in the network. As a result, nodes

need less number of transmission slots. Finally, schedule length goes down. As nodes need

less number of time-slots, energy spent for exchanging control messages for slot/parent

selection is also reduced. In addition, due to better aggregation, nodes transmit and

receive less number of packets. So, energy consumed during data transmission phase is

also reduced.

From simulation results, it is seen that AAJST results in in 5% to 10% reduction

in schedule length compared to DICA EXTENSION. It results in approximately 5%

less energy consumption during control phase. Energy savings during data phase range

from 15% to 30%. Thus AAJST seems better choice for scheduling & tree formation in

heterogeneous networks.

122

The SLBMHM algorithm attempts to balance schedule lengths of trees in homoge-

neous networks when node distribution is not uniform. The algorithm guides every node

to join a tree such that when actual scheduling & parent selection algorithm runs, result-

ing trees have balanced schedule lengths. If schedule length balancing is attempted after

scheduling is done, it is likely to result in more control overhead. Because when nodes

shift from one tree to other, both the trees need be rescheduled.

In proposed algorithm, every sink estimates schedule length of its tree based on average

density (σ) and height(h) of the tree. Sinks exchange schedule lengths and calculate

balanced schedule length (SHbal). Nodes belonging to the tree having schedule length

larger than SHbal move to another tree having smaller schedule length. It is ensured that

schedule length of one tree is reduced but that of the other tree is not increased beyond

SHbal.

The performance of SLBMHM is evaluated using simulations. It is considered that

two sinks are present. The simulation area is divided into two sub-regions. One sink is

present in each sub-region. Three different sink placements namely sinks in center, sinks

at diagonal corners and sinks near to each other are used.

Through simulations, it is found that SLBMHM algorithm results in 13% to 74%

reduction in schedule length difference and 9% to 24% reduction in overall schedule length.

As control messages are required to achieve balancing, energy consumption during control

phase is increased. The increase is between 3% to 20%. The control phase does not occur

frequently. So, this does not put much burden on sensor nodes. At the same time,

improvement in schedule length is seen at every TDMA frame. The balancing algorithm

does not change neighborhood of most of the nodes. So, number of packets received and

transmitted by a node does not change much. As a result, energy consumption during

data transmission phase remains almost same in all the three algorithms i.e. hop-count

based approach, LBR and SLBMHM.

The other reason of unbalanced schedule lengths is difference in heterogeneity of re-

gions. As explained earlier, the tree spanning through less heterogeneous region has

smaller schedule length compared to the tree spanning through more heterogeneous re-

gion. The SLBMHT algorithm attempts to balance schedule lengths in such heteroge-

neous networks. As such, SLBMHT is an extension of SLBMHM. It can balance schedule

lengths in both the cases i.e. uneven node distribution and uneven heterogeneity distri-

123

bution.

Like SLBMHM, simulation based evaluation of SLBMHT algorithm uses three dif-

ferent sink placement scenarios. When sinks are in center of each sub-region, SLBMHT

results in 22% to 56% reduction in schedule length difference and 8% to 20% reduction

in overall schedule length. But in the other two scenarios, the algorithm does not always

outperform existing algorithms.

The SLBMHT algorithm results in 2% to 17% less energy consumption during data

phase. The reason is that the SLBMHT algorithm uses AAJST for scheduling and parent

selection. The other approaches use DICA EXTENSION. Due to better aggregation, the

SLBMHT algorithm results in better energy consumption than the existing algorithms.

The improvement in data energy consumption is seen in all the three sink placement

scenarios. The energy consumption during control phase is increased maximum by 7%.

The SLBMHT algorithm results in reduction in overall schedule length and energy

consumption during data phase. It consumes more energy during control phase. But

as control phase does not take place very frequently, energy loss during control phase is

balanced by energy savings during data phase. The data phase is repeated many times

before control phase takes place. Thus network lifetime is likely to increase.

7.2 Future Work

In simulation design of both the algorithms i.e. SLBMHM and SLBMHT, three different

placements of sinks are considered: (i) sinks in centre of each sub-region (ii) sinks at

diagonal corner (iii) sinks nearby. The proposed algorithms would be better evaluated if

simulations are carried out for random placements of sinks. Even number of sinks are set

to 2 in the simulation. Again, for better evaluation, more than 2 sinks can be used. In

short, simulations may be carried out for more than two randomly placed sinks.

In the proposed algorithms, first schedule lengths of tentative trees are estimated by

the sinks and then tree switching takes place. One other way of handling the problem

of schedule length balancing is as follows. First, form actual trees and schedule them.

Once actual schedule lengths are known, let the tree switching take place. When a node

calculates new estimated schedule length of the tree assuming that it would switch to

that tree, one parameter used in calculation is current schedule length of that tree. In

124

this work, the current schedule length is an estimated value. But if actual trees and

schedules are formed initially, the current schedule length would be exact value. It would

be interesting to compare the performance of both the approaches: (i) forming tentative

trees followed by switching (ii) forming actual trees followed by switching. Again, the

performance parameters would be same i.e. schedule length difference, overall schedule

length, energy consumption during control phase and data phase.

125

Chapter 8

List of Publications

8.1 Papers Published

1. T. Vasavada and S. Srivastava, “Review of Fairness and Graph Colouring Methods

for Data Collection in Wireless Sensor Networks”, in IEEE INDICON, December,

2013.

2. T. Vasavada and S. Srivastava, “TDMA Scheduling of Group Aware Tree in Wireless

Sensor Networks”, in IEEE INDICON, December, 2014.

3. T. Vasavada and S. Srivastava, “Distributed Scheduling and Tree Formation for

Heterogeneous Wireless Sensor Networks”, in IEEE International Conference on

Advanced Networking and Telecommunication Systems (ANTS), November, 2016.

4. T. Vasavada and S. Srivastava, “Schedule Length Balancing for Aggregated Con-

vergecast in Multiple Sinks Wireless Sensor Networks”, in IEEE Regions 10 Sym-

posium (TENSYMP), July, 2017.

8.2 Paper Under Preparation

1. T. Vasavada and S. Srivastava, “Schedule Length Balancing for Aggregated Con-

vergecast in Multi-sink Heterogeneous Wireless Sensor Networks”, to be submitted

to Wireless Networks-The Journal of Mobile Communication, Computation and

Information, Springer Publications.

126

Bibliography

[1] F.Wang et. al, “Networked Wireless Data Collection: Issues, Challenges and Ap-

proaches”, in IEEE Communication Surveys & Tutorials, Vol. 13, No. 4, 2011.

[2] G. Tolle et. al, “A Macroscope in the Redwoods”, in ACM SenSys, 2005.

[3] L. Selavo et. al, “LUSTER: Wireless Sensor Network for Environmental Research”,

in ACM SenSys, 2007.

[4] G. Barrenetxea et. al, “SensorScope: Out-of-the-Box Environmental Monitoring”,

in ACM/IEEE IPSN, 2008.

[5] G. WernerAllen et. al,“Fidelity and Yield in a Volcano Monitoring Sensor Network”,

in USENIX OSDI, 2006.

[6] W.Z.Song et. al, “Air-dropped Sensor Network for Real-time High-fidelity Volcano

Mon- itoring”, in ACM MobiSys, 2009.

[7] Y. Kim et. al, “NAWMS: Nonintrusive Autonomous Water Monitoring System”,

ACM SenSys, 2008.

[8] S. Kim et. al, “Health Monitoring of Civil Infrastructures Using Wireless Sensor

Networks”, in ACM/IEEE IPSN, 2007.

[9] M. Ceriotti et. al, “Monitoring Heritage Buildings with Wireless Sensor Networks:

The Torre Aquila Deployment”, in ACM/IEEE IPSN, 2009.

[10] C. Hartung et. al, “FireWxNet: A Multi-Tiered Portable Wireless System for Moni-

toring Weather Conditions in Wildland Fire Environments”, in ACM MobiSys, 2006.

127

[11] M.D.Francesco et. al, “Data collection in Wireless Sensor Networks with Mobile

Elements: A survey”, in ACM Transactions on Sensor Networks, Vol. 8, No. 1,

August 2011.

[12] O.D.Incel et. al, “Fast Data Collection in Tree based Wireless Sensor Networks”, in

IEEE Transactions on Mobile Computing, Vol. 11, No. 1, 2012.

[13] R. Soua et. al, “MUSIKA: A Multi-Channel Multiple sinks Data Gathering Algo-

rithm for Wireless Sensor Networks”, in IEEE International Wireless Communica-

tions and Mobile Computing Conference (IWCMC), 2013.

[14] M. Pan et. al, “Quick convergecast in ZigBee Beacon Enabled Wireless Sensor Net-

works”, in ACM Journal of Computer Communications, 2008.

[15] B.Malhotra et. al, “Aggregation Convergecast Scheduling in Wireless Sensor Net-

works”, in Springer Journal of Wireless Networks, Vol 17, Issue 2, 2011.

[16] A.Ghosh et. al, “Bounded Degree Minimum Radius Spanning Trees for Fast Data

Collection in Wireless Sensor Networks”, in IEEE INFOCOM, 2010.

[17] Mixg Hia et. al, “W-MAC: A Workload-aware MAC Protocol for Heterogeneous

Convergecast in Wireless Sensor Networks”, in Sensors Journal, MDPI Publications,

Vol 17, Issue 2, 2011.

[18] Ichrak Amdouni et. al, “Joint Routing and STDMA-based Scheduling to Minimize

Delays in Grid Wireless Sensor Networks”, A Research Report, September 2014.

[19] Fang-Jing Wu et. al, “Distributed Wake Up Scheduling for Data Collection in Tree

based Wireless Sensor Networks”, in IEEE Communication Letters, Vol. 13, Issue 3,

2009.

[20] Chansu Yu et. al, “Many to One Communication Protocol for Wireless Sensor Net-

works”, in International Journal of Sensor Networks, Inderscience Publications, Vol.

12, Issue 3, 2012.

[21] M.Bagga et. al, “Distributed Low Latency Data Aggregation Scheduling in Wireless

Sensor Networks”, in ACM Transactions on Sensor Networks, Vol. 11, No. 3, April

2015.

128

[22] M.Bagga et. al, “Efficient Multi-path Data Aggregation Scheduling in Wireless Sen-

sor Networks”, in IEEE International Conference on Communications, 2013.

[23] M.Bagga et. al, “Multi-path Multi-Channel Data Aggregation Scheduling in Wireless

Sensor Networks”, in IEEE Wireless Days International Conference, 2013.

[24] R.Hwang et. al, “A Distributed Scheduling Algorithm for IEEE 802.15.4e Wireless

Sensor Networks”, in International Journal of Computer Standards & Interfaces,

Elsevier Publications, Vol. 52, Issue C, 2017.

[25] W. Lee et.al, “FlexiTP: A Flexible Schedule based TDMA Protocol for Fault Tol-

erant and Energy-Efficient Wireless Sensor Networks”, in IEEE Transactions on

Parallel and Distributed Systems, Vol. 19, No. 6, 2008.

[26] B.Zeng et. al, “A Collaboration based Distributed TDMA Scheduling Algorithm

for Data Collection in Wireless Sensor Network”, in Journal of Networks, Academy

Publishers, Vol. 9, No.9, 2014.

[27] R.Soua et. al, “A Distributed Joint Channel and Time Slot Assignment for Con-

vergecast in Wireless Sensor Networks”, in 6th International Conference on New

Technology, Mobility and Security, Dubai, 2014.

[28] I. Rhee et. al, “DRAND: Distributed Randomized TDMA Scheduling for Wireless

Ad hoc Networks”, in IEEE Transactions on Mobile Computing, Vol. 8, Issue 10,

2006.

[29] C.Lin et. al, “A Distributed and Scalable Time Slot Allocation Protocol for Wireless

Sensor Networks”, in IEEE Transactions on Mobile Computing, Vol. 10, No. 4, 2011.

[30] A. Saifullah et. al, “Distributed Channel Allocation Protocols for Wireless Sensor

Networks”, in IEEE Transactions on Parallel and Distributed Systems, Vol. 25, Issue

9, 2014.

[31] Y. Wang et. al, “A Deterministic Distributed TDMA Scheduling Algorithm for Wire-

less Sensor Networks”, in International Conference on Wireless Communications,

Networking and Mobile Computing, Shanghai, China, 2007.

129

[32] S.Isik et. al, “Multi-sink load balanced forwarding with a multi criteria fuzzy sink

selection for video sensor networks”, in Journal of Computer Networks, ElseVier

Publications, Vol. 56, Issue 2, 2012.

[33] C.Wang et. al, “A Load Balanced Routing Algorithm for Multi Sink Wireless Sen-

sor Network”, in IEEE International Conference on Communication Software and

Networks (ICCSN), 2009.

[34] C. Zhang et. al, “Load-balancing Routing for Wireless Sensor Networks with Multiple

Sinks”, in 12th IEEE International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), 2015.

[35] A.N.Eghbali et. al, “An Energy Efficient Load-balanced Multi-Sink Routing Protocol

for Wireless Sensor Networks”, in 10th IEEE International Conference on Telecom-

munications, 2009.

[36] H. Jiang et. al, “Energy optimized routing algorithm in Multi sink wireless sensor

networks”, in International Journal of Applied Mathematics and Information Sci-

ences, Natural Sciences Publications, Vol. 8, No. 1, 2014.

[37] C. Wu et. al, “A Novel Load Balanced and Lifetime Maximization Routing Protocol

in Wireless Sensor Networks”, in IEEE Vehicular Technology Conference, Spring

2008.

[38] Y. K. Sia et. al, “Spanning Multi-tree Algorithms For Load Balancing in Multi

Tree Wireless Sensor Networks with Heterogeneous Traffic Generating Nodes”, in

12th IEEE International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD), 2015.

[39] B. Yu et. al, “Minimum Time Aggregation Scheduling in Multi-Sink Sensor Net-

works”, in 8th Annual IEEE Communications Society Conference on Sensor, Mesh

and Ad hoc Communications and Networks, 2011.

[40] W. Zao et. al, “Scheduling Data Collection with Dynamic Traffic Patterns in Wireless

Sensor Networks”, in IEEE Transactions on Parallel and Distributed Systems, Vol.

24, Issue 4, 2013.

130

[41] P.Van, et. al, “Delay Efficient Data Collection with Dynamic Traffic Patterns in

Wireless Sensor Networks”, in International Conference of Wireless Networks, 2013.

[42] L.Zang et. al, “Fault Tolerant Scheduling for Data Collection in Wireless Sensor

Networks”, in proceedings of GLOBECOM, 2012.

[43] Suchetana Chaktraborty et. al, “Convergecast tree management from arbitrary node

failure in sensor network”, in Ad Hoc Networks Journal, Elsevier Publications, Vol.

11, Issue 6, 2013.

[44] Suchetana Chakrobarty et. al, “Topology Management Ensuring Reliability in Delay

Sensitive Sensor Networks with Arbitrary Node Failure”, in International Journal of

Wireless Inf. Networks, Springer Publications, Vol. 21, Issue 4, 2014.

[45] F. Ren et. al, “Attribute-Aware Data Aggregation Using Potential-Based Dynamic

Routing in Wireless Sensor Networks”, in IEEE Transactions on Parallel and Dis-

tributed Systems, Vol. 24, Issue 5, 2012.

[46] T. Winter et. al, “IPv6 Routing Protocol for Low-Power and Lossy Networks”, in

Internet Engineering Tast Force, RFC 6550.

[47] M. Palattella et. al, “Standardized Protocol Stack for Internet of (Important)

Things”, in IEEE Communications Surveys & Tutorials, Vol. 15, Issue 3, 2013.

131

Appendices

132

Appendix A

Pseudo-code for SLBMHM

Algorithm

A.1 Procedures Executed at Sensor Nodes

In this subsection, pseudo-code for procedures executed by non-sink nodes is given. Ex-

ecution begins with procedure MAIN.

procedure main

Packet p = recv()

if p.msg = HELLO then

recv HELLO(p)

if HELLO recd from all N sinks then

decide home sink()

if p.msg = JOIN then
forward JOIN

if p.msg = BAL NOT REQD then

if sender sink is home sink then

send SINK CONFIRM()

if p.msg = BAL REQD then

modify home sink()

if p.msg = SINK CONFIRM then

recv SINK CONFIRM()

if p.msg = SINK MODIFIED then
recv modified home sink

133

end procedure

procedure recv HELLO(Packet p)

if sender node not in neibors[] then

Add sender into neibors[] table

else
update height of neibor

update height of current node

Broadcast HELLO to forward it

end procedure

procedure decide home sink

home sink = nearest sink in terms of hop count

temp parent = node nearer to home sink than current node

level = distance from home sink in hop count

decide is leaf()

end procedure

procedure decide is leaf

Decide home sink and level for every neighbor

if current node has no child then
is leaf = 1

send JOIN()

end procedure

procedure send JOIN()

Create a packet of type JOIN

Store neighbor count and height in JOIN packet

Send JOIN packet to temp parent

end procedure

procedure forward JOIN(Packet p)

if sender of packet is temporary child then
Update total neighbor count

Update max. height

if JOIN packets are received from all temporary children then
Create new packet of type JOIN

Store total neighbor count and maximum height in JOIN

Send JOIN packet to temp parent

134

end procedure

procedure send SINK CONFIRM()

Create a packet of type SINK CONFIRM

Store home sink in SINK CONFIRM packet

Broadcast SINK CONFIRM packet

end procedure

procedure recv SINK CONFIRM()

Update home sink of sender

if sch len of home sink of sender < sch len of own tree then
Decrement count of neighbors belonging to sinks having less schedule lengh

than home− sink
if count of neighbors belonging to sinks having less schedule length than

home− sink is 0 AND balancing is required then

modify home sink()

end procedure

procedure modify home sink()

target set= set of sinks having schedule length less than balanced schedule length

estimate current schedule length of each sink present in target set assuming

node will join the sink

find the sink S from target set whose current estimated schedule length is

minimum and less than balanced schedule length

Create a packet of type SINK MODIFIED

Store new home sink S in SINK MODIFIED packet

Set sink changed field to 1 in SINK MODIFIED packet

Write new estimated schedule length of sink S in SINK MODIFIED packet

Broadcast SINK MODIFIED packet

end procedure

procedure recv sink modified

Update home sink of sender

if sch len of home sink of sender < sch len of current node then
Decrement count of neighbors belonging to sinks having less schedule length

than home− sink
if count of neighbors belonging to sinks having less schedule length than

135

home− sink is 0 then

modify home sink()

end procedure

A.2 Procedures Executed at Sink Nodes

In this subsection, pseudo-code for procedures executed by sink nodes is given. Execution

begins with procedure MAIN.

procedure main

Packet p = recv()

if p.msg = JOIN then

recv JOIN(p)

end procedure

procedure send hello

Create a packet of type HELLO

Store ID of current sink in HELLO packet

Set LEV EL field in HELLO packet to 0

Broadcast HELLO packet

end procedure

procedure recv JOIN(Packetp)

calculate average density (avg density) and height of tree rooted at current

sink

Estimate schedule length based on avg density and height

Exchange estimated schedule length with other sinks

Calculate bal sch len

if estimated schedule length ¡= bal sch len then
Create a packet of type BAL NOT REQD

Broadcast BAL NOT REQD

else
Create a packet of type BAL REQD

Broadcast BAL REQD

end procedure

136

Appendix B

Pseudo-code for SLBMHT

Algorithm

The pseudo-code for SLBMHT algorithm is almost similar to that of SLBMHM. Entire

pseudo-code is not presented. But differences are highlighted below:

• In JOIN message, every leaf node will write its type in addition to neighbor count

and height. Every non-leaf node will write list of types present in the sub-tree

rooted at itself in addition to total neighbor count and height of sub-tree.

• Every sink will estimate schedule length of its temporary tree based on average

density, height and type-count.

• When a node tries to switch to a different tree, it will estimate new schedule length

of that tree considering how many hops its packet will travel in the tree before it is

aggregated. The corresponding formula is as given in equation 6.1.

137

	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Data Collection
	1.2 Topology Control
	1.3 MAC Protocols
	1.4 Centralized v/s. Distributed Algorithms
	1.5 Homogeneous v/s. Heterogeneous Networks
	1.6 Multiple sinks Networks
	1.7 Major Contribution
	1.8 Summary
	1.9 Organization of Thesis

	2 Related Work
	2.1 Classification of Scheduling Algorithms
	2.1.1 General Approaches
	2.1.2 Aggregated Convergecast
	2.1.3 Raw Convergecast

	2.2 Fault Tolerance and Adapting to Workload Variation
	2.3 Scheduling and Tree Formation in Multiple Sinks Networks
	2.4 Research Gap
	2.5 Summary

	3 Problem Definition
	3.1 Motivation
	3.2 Problem Statement
	3.3 Assumptions
	3.4 Objectives
	3.5 Description
	3.6 Summary

	4 Attribute Aware Joint Scheduling and Tree formation (AAJST) Algorithm
	4.1 Motivation
	4.2 Problem Statement
	4.2.1 Assumptions
	4.2.2 Objectives

	4.3 Attribute Aware Joint Scheduling and Tree formation (AAJST) for Single Sink Heterogeneous Networks
	4.3.1 AAJST Algorithm
	4.3.2 Correctness of Algorithm

	4.4 Simulation Results
	4.4.1 Simulation Design
	4.4.2 Simulation Setup
	4.4.3 Performance Parameters
	4.4.4 Discussion of Results

	4.5 Summary

	5 Schedule Length Balancing for Multi sink HoMogeneous networks (SLBMHM) Algorithm
	5.1 Motivation
	5.2 Problem Statement
	5.2.1 Assumptions
	5.2.2 Objectives

	5.3 SLBMHM Algorithm
	5.3.1 Illustration of the Algorithm with an Example
	5.3.2 Flow Diagram of the Algorithm
	5.3.3 Steps of the Algorithm
	5.3.4 Correctness of the Algorithm
	5.3.5 Schedule length (SH) as function of Average Density () and Height (h) of Tree

	5.4 Simulation Results
	5.4.1 Simulation Design
	5.4.2 Simulation Setup
	5.4.3 Discussion of Results
	5.4.4 Quantitative Comparison of Results

	5.5 Summary

	6 Schedule Length Balancing for Multi-sink HeTerogeneous networks (SLBMHT) Algorithm
	6.1 Motivation
	6.2 Problem Definition
	6.3 Problem Statement
	6.3.1 Assumptions
	6.3.2 Objectives

	6.4 SLBMHT Algorithm
	6.4.1 Illustration of the Algorithm with an Example
	6.4.2 Flow Diagram of the Algorithm
	6.4.3 Steps of the Algorithm
	6.4.4 Correctness of the Algorithm
	6.4.5 Schedule length (SH) as function of Average Density (), height (h) and No. of Attributes ()

	6.5 Simulation Results
	6.5.1 Simulation Design
	6.5.2 Simulation Setup
	6.5.3 Discussion of Results
	6.5.4 Quantitative Comparison of Results

	6.6 Summary

	7 Conclusion & Future Work
	7.1 Conclusion
	7.2 Future Work

	8 List of Publications
	8.1 Papers Published
	8.2 Paper Under Preparation

	Appendices
	A Pseudo-code for SLBMHM Algorithm
	A.1 Procedures Executed at Sensor Nodes
	A.2 Procedures Executed at Sink Nodes

	B Pseudo-code for SLBMHT Algorithm

