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Abstract

Translation from one language to another is a complex problem in machine learn-
ing and one in which the machine still cannot achieve satisfactory results. The
recent focus for solving this challenge has been on neural machine translation
(NMT) techniques using architectures such as recurrent neural network (RNN)
and long short-term memory (LSTM). Even though they give slightly better re-
sults than the previously available conventional techniques, the transformer can
outperform these NMT techniques. To the best of our knowledge work is yet to
be carried out in translating Hindi language sentences written in Roman (English)
letters into English. In this report, we discuss how the architecture of transformer
that uses attention mechanism is used to translate Hindi language sentences writ-
ten in Roman letters into English sentences. Since there was no dataset available
till now, our work also involves creating a dataset for training and testing. Our
results are compared with other approaches using BLEU score as a measure.
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CHAPTER 1

Introduction

Machine translation (MT) is a sub-field of artificial intelligence and computational
linguistics that aims to translate text or speech from one language into another
automatically. In order to process and comprehend the meaning of the source text
and producing an equivalent translation in the target language involves using
computer algorithms and models.

Statistical machine translation (SMT) , rule-based machine translation (RBMT),
and neural machine translation (NMT) are some of the different methodologies
that can be used for machine translation. Statistical machine translation uses sta-
tistical models like dictionary matching trained on substantial bilingual corpora.
In contrast, Rule-based systems use linguistic rules and dictionaries created man-
ually. Neural machine translation (NMT) has grown in popularity recently and
uses deep learning methods and neural networks to enhance translation quality.
NMT models require only a fraction of the memory of the more conventional SMT
models.

Text is a time series data that is sequential. Recurrent neural network (RNN) is
used to handle and process time series data. Recurrent neural networks (RNNs)
are made for handling such sequential data. RNNs contain an internal memory
that enables them to keep track of prior inputs or timesteps, unlike standard feed-
forward neural networks that process inputs individually. Because of this mem-
ory, RNNs can recognize temporal connections and the context in sequential data.
The concept of machine translation dates back to the early days of computing
when scientists and researchers began exploring ways to automate the translation
process.

There are many benefits of machine translation. It helps in communication
and knowledge exchange across languages, which benefits businesses, organiza-
tions, and individuals to access information and connect with people from differ-
ent backgrounds.

In addition, domain adaptation has received attention recently, which involves
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training machine translation models on certain domains or topic areas to increase
translation accuracy in specialized contexts. This has shown to be helpful in in-
dustries like legal, medical, and technical translation, where specialized terminol-
ogy and nuanced expressions are essential.

However, there are still many difficulties with machine translation. Accurate
translations can be challenging due to cultural context, informal idioms, and lan-
guage complexities. Low-resource languages with limited training data also cre-
ate unique challenges. Nonetheless, ongoing research and advancements push
the boundaries of machine translation, aiming for more accurate and natural-
sounding translations.

Different metrics and evaluation techniques have been developed to assess
and compare the quality of machine translation systems. Manual measurements
like Bilingual Evaluation Understudy (BLEU) , which evaluates the overlap be-
tween machine-generated translations and reference translations, and human eval-
uation, where human judges evaluate the quality of translations, are common ap-
proaches.

Many NMT models generally target a single language pair translation, where
the input is in the form of one language, and the generated translated output is
in the desired language. Whereas models like multilingual neural machine trans-
lation MNMT utilize a single NMT model to enable translation among multiple
languages instead of training a single model for every language pair. However,
No research has been done on the ability of NMT models to translate sentences of
a language written in letters of another language into the desired target language,
which needs to be done. This kind of translation can be helpful for the transla-
tion of chats in communication applications. This thesis tries to establish an NMT
model’s ability based on a transformer’s architecture to translate sentences in the
Hindi language written in Roman letters into English, which is a more challeng-
ing task than translating Hindi sentences written in Hindi into English.

Problem statement - Given a dataset with sentences in the Hindi language
written in Roman letters, our aim is to translate these sentences into English using
the transformer as illustrated in figure 1.1.

Some applications output words in Hindi letters when given input of Hindi
words written in Roman letters, and some applications translate those Hindi words
into English. But none of them perform the whole work of translating directly to
English. Moreover, it faces difficulty when an entire sentence is given as the input,
as it only works on words and not the entire sentence.
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The motivation behind choosing this topic is that in daily conversation, every-
one uses their mother tongue, or what they are fluently comfortable in, but to do
that, one needs to download/install another linguistic software on their device.
Moreover, the person on the other end also needs to download/ install that soft-
ware, and if the receiver is not comfortable in that language, it creates another
difficulty. To tackle this problem, we are working on this thesis topic.

Our work has not been attempted by anyone to the best of our knowledge.
Hence, no dataset was readily available for us to work upon. So, we have created
our dataset consisting of sentence pairs of Hindi sentences written in Roman let-
ters and their respective English translation, as shown in figure 1.1, which we will
look into in detail in Chapter 5.
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Figure 1.1: Illustrations of translations from Hindi written in Roman (English)
script to English
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CHAPTER 2

Literature Survey

let us look at some machine translation models. Statistical machine translation
(SMT), developed during the 1980s, was designed based on a statistical model.
Given a large parallel corpus of translated text data, SMT takes a series of sym-
bols provided in the source language with its related vocabulary and converts
them into a series of symbols in the target language formed with its correspond-
ing vocabulary [13]. It faces challenges when the vocabulary of both languages
is of significantly different strength. [12] explains the basic idea behind SMT and
sheds light on the challenges faced. It shows the classification of various methods
in this area as well.

Next, we look into rule-based machine translation (RBMT) , introduced in
1985. RBMT is designed on the definition of rules for syntax and morphology
of a language. In RBMT, the collection of rules and vocabulary of both the source
and target languages are required as the resources. It faces challenges when the
grammatical rules of both languages are too different. [19] explains the basic idea
behind RBMT and compares the statistical and rule-based approaches to machine
translation with the help of a case study from the perspective of Indian languages.

Methods discussed so far are inadequate for machine translation tasks, lead-
ing to the invention of hybrid machine translation (HMT) . It combines and uses
various machine translation methods in a single system. The most popular and
frequently used combination is SMT and RBMT. Work in [2] explains some of the
popular hybridization methods and how they try and integrate the principal at-
tributes of the various individual techniques. It also discusses the application of
these HMT methods.

We now look at the types of machine translation techniques explored till now
using neural networks. Earlier recurrent neural networks were used to handle
sequential data. The key feature of an RNN is its recurrent connection, which
forms a loop, allowing information to persist and be passed from one time-step
to the next. At each time step, an RNN receives an input and produces an output
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and a hidden state. The hidden state serves as the memory of the network, storing
information from previous time-steps and influencing the processing of future
inputs [18].

RNNs can be seen expanding through time, with each time-step denoting a
distinct network instance connected to its preceding and subsequent time-steps.
The sequential aspect of the data processing and the information flow through the
recurrent connections are both highlighted by this unfolding picture. RNNs are
Sequence to Sequence (Seq2Seq) type of models, which takes second word as the
input only after the first word has been processed. Which is one of the drawbacks
of the RNN.

There are four types of RNNs based on the number of inputs and outputs in
the network.

• one to one : behaves as normal neural network, takes one input, gives one
output.

• many to one: many inputs, single output, widely used in sentiment analysis.

• one to many: one input, multiple outputs, most widely used for image cap-
tioning.

• many to many: multiple input, multiple output, this is used in the machine
translation task.

RNNs have disadvantages like vanishing or exploding gradients, so it faces
difficulty processing longer sequences. It takes the output of the previous step as
the input at the next step, so it can’t be parallelised.

Long Short-Term Memory (LSTM), the most popular type of RNN, addresses
some of the drawbacks of conventional RNNs by introducing gating mechanisms
that regulate the flow of data into and out of the hidden state. When handling se-
quences with pauses or delays between important events, LSTMs excel at learning
long-range dependencies [5]. However, RNNs must overcome difficulties such as
vanishing or exploding gradients, where it becomes challenging to learn how dis-
tant time-steps affect the current time-step. Variants like Gated Recurrent Units
(GRUs) and other cutting-edge architectures have been created to overcome these
problems.

A machine translation system that uses an artificial neural network to increase
the fluency and accuracy of the machine translation model is classified as a neural
machine translation (NMT) model. NMT models comprise encoder and decoder
structures and use recurrent neural networks (RNNs). RNN is cyclic, enabling it
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to learn the repeated sequences much more efficiently than other networks. In
models such as ConvS2S [3], Extended Neural GPU [8], and Byte-Net [9], conven-
tional neural networks are used as the building blocks. All these models aim to
compute the hidden representation simultaneously for all input and output posi-
tions.

The issue with such models mentioned above is that when the distance be-
tween two arbitrary words/tokens in the input or output positions increases, so
do the computational resources required to build a connection between them. It
rises linearly in the case of ConvS2S and logarithmically in the case of ByteNet.
This presents a problem since it becomes challenging to learn the dependencies
between positions [6] that are not close together. Any machine translation model
must learn about these dependencies.

Utilizing the transformer reduces the above-mentioned problems, and the amount
of operations needed to discover dependencies between distant locations becomes
constant and independent of distance. Here the idea of self-attention can be
used to calculate the representation of a sequence. It can also be called intra-
attention. It is used to relate the diverse positions of a single sequence. The con-
cept of self-attention has been successfully utilized in performing various tasks,
which include abstractive summarization [16], reading comprehension [1], learn-
ing task-independent sentence representations [11] and textual entailment [15].
We will look at the transformer and the attention in the next chapter. As there
was no dataset available prior to our work, there was no tokenizer available for
our dataset also. Here we also generated a tokenizer for our dataset, which we
will look at in Chapter 4.

In this chapter, we looked at some of the machine translation methods and
models and their shortcomings. Now, let us look at the architecture of the trans-
former in more detail in the next chapter.
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CHAPTER 3

Transformer

This machine translation model using transformer follows an encoder-decoder
structure as shown in Fig 3.1. The job of the encoder is to map an input sequence
(a1, ..., an) where ai signifies a word embedding onto c = (c1, ...., cn), where ci is
a representation of a word assigned to it by the encoder and c (Context Vector)
is a sequence of continuous representations. The decoder uses it to generate a
sequence (b1, ...., bn) as the output of words one word at a time. The nature of the
model is auto-regressive. The previously generated symbols are taken as input
for generating the next symbol.

Figure 3.1: Model Architecture of the Machine translation system using trans-
former [21]

Now let us look at the pictorial representation of the architecture of a trans-
former sub-layers as shown in Fig 3.2. It consists of self-attention layers shown
in the left part of Fig 3.2 and point-wise fully connected layers shown in the right
part of Fig 3.2. The left half of the transformer is used in each encoder layer as
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Figure 3.2: Transformer sub-layer architecture [21]

shown in Fig 3.1 using two sub-layers in each layer, and the right half of the trans-
former is used in each decoder layer as shown in Fig 3.1 using three sub-layers in
each layer.

3.1 Encoder stack and Decoder Stack

3.1.1 Encoder

The job of the encoder is to convert the input word tokens into an embedding
format that can be further used by the decoder while providing the translation.
As seen in Fig 3.1, six layers comprise the encoder, where every layer is divided
into two sub-layers. The first of these sub-layers is a mechanism that uses multi-
headed self-attention; which will be covered in section 3.2.2. The second layer
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is a feed-forward network, which is fully connected position-wise. A residual
connection [4] is used in both sublayers, subjected to layer normalization [7].
All sub-layers in the model as well as the embedding layers, produce outputs
of dmodel = 512.

Figure 3.3: Look ahead mask

3.1.2 Decoder

The decoder’s job is to take the embedded input from the encoder and convert
them into their corresponding translations, and provide the word in the target
language as the final output. As seen in Fig 3.1, the decoder also consists of 6
layers, each further divided into three sub-layers. The initial two sub-layers are
similar to those used in the encoder; the third sub-layer performs encoder-decoder
attention on the output generated by the encoder. As in the case of the encoder,
a residual connection is used here, and this output undergoes layer normaliza-
tion. However, there is a subtle modification to the self-attending sub-layer in the
decoder; the combination of the look-ahead mask, as shown in Fig. 3.3, and the
offset of output embeddings by one position makes sure that the prediction for
the symbol in the position I depend only on the previously generated outputs.

3.2 Attention

When a sentence is composed in any language, words within it have some inter-
relationship. To capture this relationship between words within a sentence, the
concept known as "attention" was formed. It decides which word in the sentence
pays how much attention to another word in that sentence. Attention [21] may
be understood as a relationship between queries and a set of pairs, whose nature
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is that of a key and value to the output. Here, query(q) , key(k) and value(v) are
all vectors. For each value, a weight will be assigned. This weight is computed
using a query’s similarity function with its respective key. Now the output can be
calculated as a weighted sum of these values. Two kinds of attention are used in
the machine translation system, which is discussed below.

3.2.1 Attention using Dot Product

For calculating attention, we need an input that is made up of queries q and keys
k, which have dimensions of dk. We also need values v, which has a dimension
of dv. Queries in the machine translation model can be understood as the input
word vector; keys are the input word vectors for all the other words, and values
are the collection of positional input embedded vectors shown in the flowchart in
Fig 3.4. The mathematical representation of attention is given as follows :

AT(q, k, v) = S(
qkT
√

dk
)v (3.1)

The above equation generates an attention matrix AT, S is the soft-max acti-
vation function, and q, k, and v are queries, keys, and values, respectively. These
attention vectors are computed for each word during training. Upon computa-
tion, they will contain the information regarding which word is being paid the
most attention by the encoded-word.

3.2.2 Multi-Headed Attention

Our method uses multi-headed attention. Using multi-headed attention [21] al-
lows the model to simultaneously attend to various representation sub-spaces at
various locations instead of using a single attention function. The mathematical
representation of multi-headed attention is given as:

M(q, k, v) = [head1, ..., headh]Ao (3.2)

M is multi-headed attention computed for a specific query, key, and value vec-
tor set. Here [] represents the concatenation operation of the multiple heads taken
from 1 to h, where the value of h is taken as eight as per [21]. It is necessary to take
multiple heads as it increases the model’s ability to focus on various positions. It
also prevents the word from dominating the encoding when an attention vector
is calculated.

Each headi is computed as:
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Figure 3.4: Process for forming self-attention vector

headi = AT(qAq
i , kAk

i , vAv
i ) (3.3)

The projections Aq
i , Ak

i , Av
i , and Ao used above are parameter matrices, and

these parameters will be learned as the model is trained on the desired data and
will be adjusted accordingly using weights. Their dimensions are given as fol-
lows:
Aq

i ∈ Rdmod∗dq

Ak
i ∈ Rdmod∗dk

Av
i ∈ Rdmod∗dv

Ao ∈ Rhdv∗dmod

Here query (q), key (k), and value (v) are projected h times linearly while using
various linear projections that can be learned. The dimensions dk and dv are set to
64, and dmod is set to 512 according to [21]. When the attention function is utilized
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parallelly on each of the projected versions of q, k, and v, they will generate output
values of dimension dv. These outputs are concatenated and then projected once
more, giving us the final attention vector of each word, as shown in figure 3.4.

3.3 Usage of attention in Machine Translation

In machine translation using the transformer, attention is used in different ways:

• To enable each position within the encoder to pay attention to all the po-
sitions within the previous layer, self-attention is used within the encoder
layers; in these layers, q, k, and v are all taken from the output generated by
the encoder in the previous layer.

• The decoder also contains self-attention layers, which enable each position
of the decoder to pay attention to the positions in the decoder. If the flow
of information is leftward, it will interfere with the auto-regressive property.
As shown in Fig. 3.3, a look-ahead mask is utilized to prevent this. It is used
to pay attention till the current position, including the current position.

• In the encoder-decoder attention layer, each position in the decoder is en-
abled to pay attention to each position in the input sequence. The q is taken
from the output of the previous decoder layer, and the k and v are taken
from the output generated by the encoder.

3.4 Position-wise Feed Forward Networks

A fully connected layer accompanies each layer in the encoder and the decoder.
It is applied identically and separately for each position. It is made up of Recti-
fied Linear Unit (ReLU) activation between two linear transformations [21]. For
position x it is given by:

F(x) = max(0, xA1 + c1)A2 + c2 (3.4)

The output F(x) is obtained by applying the ReLU activation to the result of
the first linear transformation, followed by another linear transformation with
bias terms.

Where Ai is a projection, and ci is a bias.
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3.5 Embeddings and softmax operation

For converting the input and output tokens into vectors of dimension, dmod em-
beddings are used. A softmax function is combined with the learned linear trans-
formation to help predict the probabilities of the next word [21].

3.6 Position wise Encoding

This translation model does not contain any recurrence or convolution operations.
This creates a need to include information regarding the relative or absolute po-
sitions of the words in the sequence, which will help the model use the order of
the sequence. This is where positional encodings are used; they are added to the
input embeddings in the encoder and decoder stacks. The dimensions of both
these encodings are the same dmod. For this purpose, sine and cosine functions
with different frequencies are used; they are given below:

PE(loc, 2j) = sin(
loc

100002j/dmod
) (3.5)

PE(loc, 2j+1) = cos(
loc

100002j/dmod
) (3.6)

Here, loc is the position of the vector, and j is the vector’s dimension, as seen
in Fig 3.4. The positional encoding vector will follow a particular pattern. The
model learns this pattern through which it will help establish the location of each
word or the separation between different words in the sentence. These positional
encoding vectors are added to every input encoding. By doing this, the encod-
ings are provided with relevant separation of the encoding vectors after they are
projected into the query, key, and value vectors to compute the attention vector.

3.7 Working of attention

In traditional Seq2Seq models comprising an encoder-decoder structure using
RCNN or LSTM, the encoder will process and encode the input sequence into
a context vector of fixed length. This context vector is fed to the decoder as an
input; using this, the decoder starts predicting the output. However, the problem
associated with a fixed-length context vector is that it cannot remember longer
sequences. It tends to forget the beginning part of the sequence once the entire
sequence is processed. This is the motivation for the development of the atten-
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tion mechanism. To understand how the attention mechanism works, let us walk
through an example where a Hindi sentence is converted into English, as shown
below.

3.7.1 Computation of score for Encoder State

Each encoder state E1, E2, E3, E4, and E5 stores the local information of the input
sequence. The objective is to predict the first word, but the decoder has no initial
state, so we consider the last encoder state, E5, as the previous decoder state. We
now train a feed-forward network using all the encoder states and the current
decoder state. The information to predict the first word in Hindi is stored in the
encoder states E1 and E2. Therefore we need the decoder to pay more attention to
these states than the others. This is the reason for training a feed-forward network
to learn to assign a higher score to the states that require more attention and assign
a lower score to the states that are meant to be ignored. Let S1, S2, S3, S4, and S5
be the scores generated for each encoder state. Since the information is in E1 and
E2, their scores in S1 and S2 will be higher compared to the others.

3.7.2 Computation of the Attention Weights

A softmax is applied to the scores generated to produce attention weights w1,w2,w3,w4,
and w5. In this example, the values of w1 and w2 will be higher than the others
to help predict the first word.

3.7.3 Computation of the Attention Vector

After the generation of the attention weights, a context vector will be generated
that will be used by the decoder to predict the next word in the sequence. The
context vector is calculated as follows:

contextvector = w1 ∗ E1 + w2 ∗ E2 + w3 ∗ E3 + w4 ∗ E4 + w5 ∗ E5 (3.7)

In this case, the values of w1 and w2 are higher than the others. Therefore, it
contains more information from the states E1 and E2. Concatenate context vector
with an output of the previous time step: The decoder uses this context vector and
the output word generated from the previous time step to predict the next word
in the sequence. Since the first time step, there is no output from the previous
time step, a unique token < START > is given to the decoder.
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3.7.4 Decoder Output

Concatenate context vector with an output of the previous time step: The decoder
uses this context vector and the output word generated from the previous time
step to predict the next word in the sequence. Since the first time step, there is
no output from the previous time step, a unique token < START > is given to the
decoder. The decoder predicts the first word of the sequence; a hidden state, d1,
is also generated along with this output.

Decoding at Time step 2: To predict the next word in the sequence, the internal
state d1, along with all the encoder states E1, E2, E3, E4, and E5, are given to
the feed-forward network, which then generates new S1, S2, S3, S4, and S5 scores
which are used to compute new attention weights, and a new context vector is
generated. This context vector is concatenated with the previous time step output
and given to the decoder to predict the next word, producing a new internal state
d2.

This process is repeated till the decoder generates the < END > token. After
the generation of this token, the process is terminated.

The main thing to be noted is that in the case of traditional Seq2Seq models,
a fixed context vector was used for every decoder time step. In contrast, in the
case of the attention mechanism, a new context vector is computed every time by
using newly generated attention weights.
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CHAPTER 4

Proposed Approach

As shown in the figure 4.1 this chapter describes our proposed approach:

Figure 4.1: Block Diagram

4.1 Pre-processing

First, we need to check if the data is in the form of a parallel corpus. If the data is
misaligned, we need to align it accordingly. Then we remove empty lines, if any.
Then we divide the dataset into the train, validation, and test dataset.

This pre-processed data will be fed to the tokenizer.

4.2 Tokenizer

Although the dataset contains Hindi words, they are written in Roman letters, so
neither a tokenizer for Hindi nor English can be used. Therefore we had to create
our custom tokenizer for our dataset using sentence-piece tokenizer [10], which
can be seen in figure 4.2.
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Figure 4.2: Tokenized sentences

We have also used a tokenizer to make sub-worded sentences. Sub-words are
generated by dividing one word into two or more than two words or mixing two
words to create another word, which can be seen in figure 4.3. This can be useful
when a word is encountered while translating not in the training vocabulary to
predict the nearest meaningful word.

Figure 4.3: Sub-worded sentences

These tokenized sentences are used to train the transformer.
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4.3 Transformer Model Training

As described in Chapter 3 on transformer, a transformer model with six encoder
and decoder layers comprising multi-headed attention is created to train on the
dataset. All the hyper-parameters that can be tuned are mentioned in the config
file for fine-tuning.

4.4 Hyper-parameters

We trained the transformer model on our system with the below tuned hyperpa-
rameters:

• Train Steps: 60,000

• Valid Steps: 500

• Warmup Steps: 8000

• Seed: 3435

• Word vector size: 512

• layers: 6

• Hidden state size: 512

• Self-attention head: 8

• Optimizer: Adam

• adam beta1: 0.9

• adam beta2: 0.998

• Decay method: noam

• Learning rate: 2.0

• max gradient normalization: 0.0

• Batch size: 4096

• Dropout:0.1

• Label smoothing: 0.1
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• max generator batches: 2

• initial parameter: 0.0

• param init glorot: True

4.5 Hardware Specifications

We trained our transformer model on a machine with eight Intel (R) Xeon (R) E5
-2609 v4 CPUs with 1.7 GHz frequency with 64 GB RAM. which took two days to
complete training.
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CHAPTER 5

Experimental Results

As no datasets containing Hindi sentences written in Roman letters existed before
our work, we have created the parallel dataset.

5.1 Dataset

The dataset required for a translation model should be a parallel corpus in text
format. In one file, the sentences are given in the source language; in the other,
the translated equivalents of the first file are shown in the target language.

The dataset used for training the model is an original dataset created by us
inspired by" Samanantar" [17]. The Samanantar dataset is the most extensive par-
allel corpus of Indic languages publicly available. The languages available in the
dataset are Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi,
Oriya, Punjabi, Tamil, and Telugu. We have created more than 30,000 sentence
pairs in "Hindi written in Roman-English" for now. With train, validation, and
test split = 20000, 5000, 8000, respectively. To assess the accuracy of a machine
translation system, a metric known as BLEU score [14] is used, which is the stan-
dard method for the evaluation of any machine translation model.

5.2 BLEU score Evaluation

The quality of machine-generated translations or text outputs is frequently as-
sessed using the BLEU (Bilingual Evaluation Understudy) score. It measures the
similarity between a machine-generated text and one or more reference texts (typ-
ically human-generated) [14].

The BLEU score is based on the principle that good translations should con-
tain similar n-grams (contiguous sequences of n words) as the reference transla-
tions. The metric calculates precision by comparing n-grams from the machine-
generated output with those in the reference translations [14]. The equation for
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calculating the BLEU score is as follows:

BLEU = BP ∗ exp(
N

∑
n=1

wnlogPn) (5.1)

Where:
BP (Brevity Penalty) : It penalizes the translation if it is much shorter than the
reference translation.

BP =

{
1 , if candidate length >= reference length,
exp(1 − re f erencelength

candidatelength ) , if candidate length < reference length,
(5.2)

N: The maximum n-gram order considered for precision calculation.
Pn: The precision of n-grams between the candidate translation and the reference
translation.
wn: The weight assigned to each precision score. Typically set to 1/N, which gives
equal importance to all n-grams.

Figure 5.1 below shows an example of the translated sentence. The BLEU
scores for different models are shown in the table 5.1. It shows that our proposed
method gives a better BLEU score than the other methods.

Figure 5.1: Input sentence and its translated sentence using proposed method

To compare our results, we trained another Bi-LSTM model. However, the
main thing to notice here is when we tried to use Facebook’s latest No Language
Left Behind (NLLB) model [20], which claims it can translate a sentence from
any language to any other language; it fails to generate translated output for our
dataset which is evident from figure 5.2 and 5.3, that resulted in the same input
as shown in figure 5.2 or in some cases it generates random sentence as shown in
figure 5.3 which in no way is connected to the original sentence which means it
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can not translate these sentences.

Figure 5.2: Snapshot of translated sentences using NLLB [20]

Model Bleu Score
NLLB [20] 0
Bi-LSTM 8.23

Proposed Model 10.64
Subword + Proposed Model 10.82

Table 5.1: BLEU scores comparison
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Figure 5.3: Snapshot of one of the above translated sentences using NLLB [20]
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CHAPTER 6

Conclusion and Future Work

The work we have carried out has not been done before, to the best of our knowl-
edge, for which we have even created our dataset. Hence, to compare the result of
our method we trained another simple transformer and Bi-LSTM as well. Looking
at the BLEU scores in table 5.1, it is evident that using a transformer for machine
translation will give better results and using subwords improves accuracy.

The task here shows that the transformer can translate Hindi in Roman let-
ters into English sentences, which is more challenging than translating Hindi sen-
tences written in Hindi translated into English.

One possible application of the work carried out in here is chat applications.
We have created a dataset of around 30000 sentence pairs. However, one can

generate more sentence pairs and train the model to get better results.
Similarly, We can generate a dataset for the Gujarati language and train on

that.
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