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Abstract

Radioactive soil and water radon gas emission is a significant precursor to earth-
quakes. The meteorological parameters such as temperature, pressure, humidity,
rainfall, and windspeed influence the radon gas emission from the medium such
as soil and water. In this study, radioactive soil radon gas has been investigated
for earthquake prediction. Before the seismic events, radon gas emission is also af-
fected by seismic energies. These seismic energies are responsible for the changes
inside the earth’s crust, which causes earthquakes on earth. Our focus in this work
is first to predict the radon gas concentration using Machine Learning algorithms
and then identify anomalies before and after the seismic events using standard
confidence interval methods. We experimented with different machine learning
models for the detailed comparative study of radon concentration predictions. A
dataset is divided into different settings of training and testing data. Testing data
includes the seismic samples only. The models are trained on non-seismic day
samples and some of the seismic day samples and tested on seismic day sam-
ples. After acceptable predictions, anomaly detection can be done on test data.
A simple mean plus two standard deviations away test has been used to identify
the original measured radon values, which are out of this prediction confidence
interval. These values are then considered as an anomaly.
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CHAPTER 1

Introduction

As we are aware, earthquakes are devastating natural occurrences that can strike
unexpectedly, posing a threat to both living and non-living entities worldwide.
Given the absence of reliable forewarning, it remains exceedingly challenging task
to predict all three critical parameters of earthquakes: time, magnitude, and loca-
tion. While the precise timing is of utmost importance, current research primarily
focuses on earthquake forecasting rather than prediction. Determining the loca-
tion parameter can be accomplished through the location from where our data is.

There are mainly two approaches for the prediction of seismic events. In
the first approach, different earthquake precursors are characterized. In the sec-
ond approach geophysical trends, or seismological patterns that precede a large
earthquake are identified. Precursor methods are largely used for short-term
earthquake prediction [25]. Precursor methods deal with anomalies in physi-
cal phenomena that might give accurate warning of incoming earthquake [25].
Some possible precursors that might useful for the prediction of earthquakes in-
clude: strange behaviour of animals, electromagnetic anomalies, anomalies in
ionosphere and behaviour of radon in soil, water and atmosphere, etc. Several
studies [27][28][17] along the globe has found the radon gas concentration as
strong precursor of the earthquake [31][10][32]. Also the radon can be easily de-
tected in the soil and water. That is why in most of the study [18][19], the radon is
considered as earthquake precursor.

Radon (222Rn) is a radioactive gas that is naturally produced through the de-
cay of other radioactive elements found in the Earth’s crust. Radon is a naturally
present noble gas that is odorless, colorless, and radioactive. It has half-live of
around 3.82 days [7]. It is present in rocks worldwide. Radon has been extensively
studied as a means to track volcanic activity and potentially predict earthquakes
[1]. The correlation between radon signals and tectonic events is a subject of on-
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going discussion, but numerous instances of anomalous radon signals associated
with tectonic activity have been documented globally [13]. These anomalies are
believed to occur due to the fracturing processes in the Earth’s crust that precede
an earthquake. As stress is released within the crust, it facilitates the movement
of fluids and gases, including radon, from deeper sources.

Radon, a chemically inert radioactive gas, is continuously produced through-
out the Earth, typically in small amounts due to the presence of radium in crustal
materials. Many studies have focused on understanding the emission and move-
ment of radon within the Earth and the atmosphere [24][2]. Radon has various ap-
plications, such as identifying buried uranium deposits (which give rise to radium
and radon), tracing the movement of air and groundwater, indicating fault lines,
and potentially serving as a tool for earthquake prediction. In Russia and China,
measurements have shown anomalous changes, mostly increases, in groundwa-
ter radon content prior to certain major earthquakes [27].

Radon gas, specifically Radon-222 (222Rn), is generated as a by-product of the
radioactive decay of radium-226 (226Ra) which is part of the 238U decay series
found in the Earth’s crust. Radon, a naturally occurring noble gas, exists in three
isotopes: 222Rn (commonly referred to as radon), 220Rn (known as thoron), and
219Rn (referred to as actinon). Radon primarily originates from the radioactive
decay of the 238U series, while thoron stems from the 232Th radioactive series, and
actinon originates from the 235U series. The crustal abundance of these isotopes
is as follows: 238U (uranium) - 2.7 µ g kg−1, 232Th (thorium) - 8.5 µ g kg−1, and
235U (actinum) - 0.02 µ g kg−1. Although the concentration of 232Th is slightly
higher than 238U in the Earth’s crust, the production rates of 222Rn and 220Rn are
approximately equal. This is due to the longer half-life of 232Th (14.1 × 109 years)
compared to 238U (4.5 × 109 years). Among the three isotopes, 222Rn is more sig-
nificant because it has a longer half-life of 3.825 days, whereas 220Rn (55.6 s) and
219Rn (actinon) have much shorter half-lives. The shorter half-lives of the latter
two isotopes limit their transport through diffusion to only short distances. How-
ever, thoron manages to reach the Earth’s surface, although in smaller quantities
compared to radon. In our work, the focus is on radon rather than the other iso-
topes. It is naturally occurring and can be found in small quantities throughout
the Earth’s environment, including soil, groundwater, and the lower layers of the
atmosphere.
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In May 1975, the U.S. Geological Survey initiated the monitoring of subsurface
soil gas radon levels along active faults in central california to investigate whether
this parameter could provide valuable earthquake-related information. Several
reasons motivated us to choice soil radon gas over groundwater. Firstly, soil gas
monitoring offered distinct advantages over groundwater monitoring. Addition-
ally, preliminary evidence suggested the potential usefulness of radon measure-
ments. It had been observed that fault zones often exhibit radon enrichment in
soil gas, and there were indications of significant radon increases in near-surface
air around the time of certain earthquakes [20]. Second reason is the location
from where the data has been collected. The data was gathered from the Pragpar
station located in the Kutch region of Gujarat, India. Kutch is characterized by
arid and desert conditions with limited groundwater availability. So soil radon
gas is the potential choice for our experiments. Also the environmental factors
like barometric pressure, temperature, rainfall, and wind speed can strongly in-
fluence radon levels in the air near and above the ground surface.

One promising approach to earthquake prediction involves monitoring anoma-
lous soil radon gas concentrations, which act as precursors to seismic activity. Re-
searchers have observed abnormal radon emissions before and after earthquake
events [27]. It has been discovered that radon emission is influenced by various
environmental factors such as temperature, pressure, humidity, wind speed, and
rainfall during normal days [16]. However, during seismic events, radon emis-
sion experiences significant anomalies due to the introduction of seismic energy
[30].

Initially, classical machine learning models like Support Vector Regressor (SVR)
with linear, polynomial, and radial kernels, as well as decision trees and random
forests, were employed to predict radon concentration. However, these models
failed to yield accurate predictions. Consequently, the research strategy was ad-
justed, leading to the formulation of several important hypotheses based on pre-
vious experiments.

The first hypothesis postulated that the radon time series data contained high-
frequency components that might impact the performance of machine learning
models. The second hypothesis we made was the lack of seismic events in the
dataset, and the third hypothesis proposed that the previously used machine
learning model were unable to capture the pattern of complex radon time series
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data. To validate these hypotheses, various methods were employed, such as fil-
tering and data re-sampling techniques to remove or average out high-frequency
components, synthetic data generation techniques to create additional seismic
events, and subsequent training of classical models to evaluate the third hypoth-
esis.

Through a series of experiments, it was discovered that almost all the hypothe-
ses held true. To enhance radon prediction, the decision was made to employ
more robust machine learning models, such as Gradient Boosting Machine, XG-
Boost. Additionally, synthetic seismic events were generated using the Geomet-
ric Mean (GM) to simulate patterns similar to those of real seismic events. The
original dataset comprised samples taken at 10-minute intervals. To reduce the
high-frequency components within the time series data, we performed resam-
pling, adjusting the sample interval to one hour. This was achieved by averag-
ing six consecutive samples. The process of resampling effectively filters out the
higher frequency elements present in the data.
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CHAPTER 2

Literature Survey

There are several studies that have been done in the area of earthquake predic-
tion using radon time series data as precursor [21][14]. Several studies have used
Machine Learning (ML) [18][19][3], Deep Learning (DL) [23], and Artificial Intel-
ligence (AI) [26] for the prediction and identification of anomalies in radon con-
centration. Some of them are described below as a brief survey.

Adil aslam mir, Hadeel Alsolai et al. [18] has suggested Machine Learning-
Based Ensemble Model technique for anomalies prediction in radon time series
data for earthquake likelihood. They employed and compared the results of dif-
ferent individual machine learning models (KNN, Support vector machine with
linear and radial kernel) and ensemble machine learning models (bagging and
boosting). They performed these methods on different training and test set dis-
tributions through settings from 1 to 4. The training set is composed of different
seismic activities and normal data while testing data is based upon seismic activi-
ties with its associated time window from 1 to 4. They concluded from the results,
that ensemble models (boosted tree method) performs better than the all other ML
models in all the dataset settings. Although they does not do anything regarding
the anomaly detection, they opened this work for their future work.

Adil aslam mir, Muhammad Rafique et al. [19] has done good contribution to-
wards the anomaly detection of the seismic activity. They used stacking technique
of machine learning to classify the time series data into two class seismically ac-
tive (SA) and inactive (NSA) data. Further they developed an anomaly indication
function to classify the data for the whole day instead of just particular observa-
tion or sample (samples are collected at every 40 minute).

The main idea behind their methodology is the use of two layers. The first
layer uses a stacking ensemble-based approach that incorporates three learners,
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i.e. a generalized linear model, linear regression and K-nearest neighbors, to train
on seismically active and inactive periods to predict soil radon gas (SRG) concen-
tration. These predictions are then combined with the labeled anomaly data to
train a meta-learner, i.e., support vector machine with a radial kernel, that cate-
gorizes the series into active and non-active radon time series data. In the second
layer, these classifications are then passed to an automatic anomaly indication
function that further labels the time series in a group of readings where the level
of received indications is greater than or equal to the indication factor [19].

For experimentation, the soil radon gas concentration dataset is divided into
Non Seismically Active Data (NSAD) and Seismically Active Data (SAD). Fur-
thermore, from the mixture of NSAD and SAD, training, validation, and testing
is performed according to window sizes. They used window size from 0 to 3 to
perform their experiment. Window size 2 means SRG data which belongs two
days before and after the seismic event.

They have proposed an automatic anomaly indication function (AAIF) that
measures the percentage of anomalous samples from incoming series of anoma-
lous and non-anomalous samples. If the percentage of anomalous samples in-
creases, i.e., the indication factor (IF) = 0.55, the full day samples are considered
to be anomalous and assigned the class label of 1 (SA) [19].

Suhrid Singh, Hari Jaishi et al. [23] studied the radon gas concentration as
precursory of the seismic event and done some statistical analysis using multiple
linear regression and Artificial Neural Network (ANN). In their study, they have
observed that anomalous decrease in radon were correlated with seismic events.
However, the decrease in radon concentration prior to the seismic event had been
reported only very few times in literature.

They conclude that, out of the five radon anomalies, three anomalies (two
crossing -2SD and one crossing -1SD) were correlated with relevant earthquakes.
These three negative anomalies caused by admixing of radon-poor water from
another aquifer through cracks created by the earthquake-related strain changes
along the study region. However, They said in their conclusion that, more data
recorded by various geophysical and geochemical instruments with good time
resolution and rigorous statistical data analysis are needed to understand the un-
derlying earthquake mechanism, also to discover more true earthquake precur-
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sors [23].

D. Torkar, B. Zmazek et al. [26] has also employed the ANN based prediction
of radon concentrations and correlated them to earthquakes. They firstly elimi-
nated the seismic activity data from the dataset and then trained the neural net-
work. Thus the ANN never “saw” the increased radon concentrations caused by
earthquakes but just those caused by other reasons (false anomalies). And these
other reasons are strongly connected to the five environmental parameters (Air
and Soil Temperature, Soil and Air pressure, Rainfall) that served as ANN inputs.
In this way the network captured the relationship between these parameters and
the radon concentration during training. This was verified by the high correlation
between measured concentration and predicted ones from the validation (cross-
correlation) and test set [26].

During the performance stage when the network is fed by SA and NSA data,
the output of ANN does not react to the seismic activity since the input parame-
ters are not affected much by the earthquakes. But the Rn concentration is, and
the discrepancy between the measurements and the ANN output increases, and
an anomaly in the —Cm/Cp1— signal is generated [26].

Further they discovered that the anomaly detection process is as critical as the
prediction itself. They identified five parameters that affect anomaly detection
and by using an exhaustive search they defined the optimal values for the current
dataset. They then replaced the exhaustive method by another ANN with num-
ber of particular anomalies nCA (no. of correct anomalies), nFA (False anomalies),
nNA (no anomaly) in the input and detection parameters in the output. They
found out that the performance of this neural network is limited to successful de-
termination of 2–3 parameters (out of five) and that using this parameter results
in proper determination of CAs and FAs, but not the NAs.

B. Zmazek, L. Todorovski et al. [26] gave one hypothesis that during the seis-
mically active (SA) periods the prediction will be significantly worse than during
seismically inactive periods. They further performed the experiments to test this
hypothesis. Basically they considered ”the change in predictability during SA pe-
riods” as the presence of anomaly.

For the experiment, they implemented the regression tree method to find the

7



relationship or correlation between the radon gas concentration and the environ-
ment parameters, since all the data are numeric in nature, regression can be the
good choice to predict or forecast the radon data. Unlike classical regression ap-
proaches, which find a single equation for a given set of data, regression trees
partition the space of examples into axis-parallel rectangles and fit a model to
each of these partitions. A regression tree has a test in each inner node that tests
the value of a certain attribute and, in each leaf a model for predicting the class.
The model can be a linear equation or just a constant. Trees having linear equa-
tions in the leaves are also called model trees (MT) [33].

They have used the attributes - average daily barometric pressure, average
daily air temperature, average daily soil temperature, difference between daily
soil and daily air temperature, daily amount of rainfall, and difference in daily
barometric pressure was selected. And the value of the dependent variable is
daily radon concentration. They split the data into two parts: 1) Seismically active
days (i.e They choose periods of 7 days before and after an earthquake) 2) Data
for remaining day were included in Non seismically active class. They trained the
model on non-seismic data (i.e. second part of dataset) and tested it on seismic
data (i.e. first part of the dataset).

Based on the results they observed that, A Model can predict the radon con-
centration with a correlation of 0.8 during the seismically inactive period, pro-
vided that it is influenced only by the environmental parameters and not by the
any other seismic activity. They also observed that during the seismically active
period this correlation is very much low and concluded their hypothesis as true.
These decrement in predictive accuracy appears for 1 to 7 days before the earth-
quake with local magnitude 0.8 to 3.3 [33].

Previous research has presented diverse approaches to predict radon concen-
tration and detect anomalies in radon. Researchers have formulated different hy-
potheses based on specific study regions and previous research, contributing sig-
nificantly to the field. However, despite their valuable contributions, these studies
have certain limitations. For instance, Adil Aslam Mir, Hadeel Alsolai, et al. [18]
proposed the concept of data division for efficient case analysis but did not pro-
vide a specific strategy for dividing the data. Although they demonstrated the ef-
fectiveness of ensemble models in predicting radon concentration, their research
focused solely on this aspect and did not address the crucial task of anomaly de-
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tection, which plays a vital role in earthquake prediction.

Our study is motivated by the scarcity of research that utilizes machine learn-
ing techniques to predict earthquakes in the specific Kutch region of India, which
is classified as Zone-V (a region of very severe intensity). Similar to the Himalayan
region, Kutch experiences frequent seismic events, emphasizing the need for a
highly accurate alert system in this area. While extensive analysis of earthquakes
and their precursors has been conducted in these regions using traditional sig-
nal processing methods [21] [22]. Hence, our primary motivation is to develop
a complete end-to-end earthquake forecasting model utilizing machine learning
algorithms. By addressing the shortcomings of prior work and focusing on the
unique challenges of the Kutch region, we aim to create a real-time earthquake
alert system that enhances the accuracy and reliability of earthquake prediction
in this high-risk area.
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CHAPTER 3

Data Description

The Institute of Seismological Research (ISR), located in Gandhinagar, provided
the dataset for our experiments. ISR has collected the data over two years from
the Pragpar Seismology Station of the Kutch region in Gujarat, India. The dataset
contains five features: Radon concentration (Bq/m3), Temperature (C◦), Pressure
(mBar), Humidity (%), Windspeed (Km/h). The environmental parameters viz.
Temperature, Pressure, Humidity and Windspeed are used as independent vari-
ables to the machine learning model and we are predicting the radon concentra-
tion value using that model. Dataset has total 101692 samples. The samples are
collected over two years from 22/01/2020 to 28/12/2021. Total 144 samples are
collected on daily bases. Time duration between each sample is 10 minutes. Mea-
surement for the day starts from 00:00:00 and ends at 23:50:00, except the first and
last day of the dataset period. For the first day of the dataset the time period is
from 11:50:00 to 23:50:00 and for the last day, the time period is 00:00:00 to 16:50:00.
There was some missing data in the provided dataset e.g. at row index 18897 one
timestamp was missing. Missing values are filled with the average of previous
data samples.

During the data collection period total 23 earthquakes has been recorded, see
Figure 3.1. The details for these earthquakes are present in Table 3.1. Our inter-
ested parameter in the dataset is radon concentration, the mean value of mea-
sured radon concentration is 2378.61 Bq/m3 with standard deviation of ±1773.79
Bq/m3. The minimum and maximum value of measured radon is 188 Bq/m3

and 14994 Bq/m3 respectively. During the seismically active days the mean value
of observed radon concentration is 3110.32 Bq/m3, with the standard deviation
of ±2383.23 Bq/m3. The minimum and maximum value of radon concentration
during seismically active days are 294 Bq/m3 and 14994 Bq/m3.
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Figure 3.1: Location map of Soil radon gas concentration measuring station Prag-
par, Kutch, Gujarat, India. The inverted triangle shows the location of data center;
the stars shows the location of earthquakes, the size of stars describe the magni-
tude of earthquake (i.e. bigger size higher magnitude), color of the stars shows
the depth of the earthquake epicenter

Data source: Institute of Seismological Research(ISR)

Index Date(DD/MM/YYYY) Time Magnitude Depth(Km) Latitude Longitude
1 02/02/2020 08:35 AM 3.3 23.394 70.378 20.8
2 04/03/2020 12:14 PM 3.2 23.362 70.215 11.5
3 14/06/2020 08:13 PM 5.3 23.397 70.416 19.4
4 05/07/2020 05:11 PM 4.2 23.412 70.393 27
5 23/07/2020 06:47 AM 3.7 23.499 70.277 18.8
6 17/08/2020 10:28 PM 3.6 23.498 70.438 22
7 23/08/2020 10:07 PM 4.1 23.509 70.415 21.3
8 02/09/2020 02:09 PM 4.1 23.372 70.153 30.5
9 07/01/2021 07:22 PM 4 23.376 70.376 23.1

10 20/01/2021 12:13 AM 3.6 23.356 70.045 19.7
11 22/01/2021 05:17 PM 3.7 23.396 70.69 15
12 04/03/2021 03:29 AM 3.9 23.627 70.522 6
13 21/03/2021 01:15 AM 3.7 23.534 70.576 15.5

Table 3.1: Earthquake details (Date, time, magnitude, depth, latitude, longitude)
Source: Institute of Seismological Research(ISR)
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We calculated the Pearson correlation coefficient between each pair of the fea-
ture parameters to know the relation between environmental parameters viz—temperature,
pressure, humidity, wind speed, and radon concentration. The Equation 3.1 shows
the general formula for the Pearson correlation coefficient. The Table 3.2 shows
the correlation between each pairs of the dataset attributes.

r = ∑(xi−x̄)(yi−ȳ)√
∑(xi−x̄)2(yi−ȳ)2 (3.1)

r = correlation coefficient
xi = values of the x variable
x̄ = mean of the x variable

yi = values of the y variable
ȳ = mean of the y variable

Radon Temperature Pressure Humidity Windspeed
Radon 1 0.222 -0.368 0.172 0.061

Temperature 0.222 1 -0.676 0.330 0.476
Pressure -0.368 -0.676 1 -0.533 -0.339

Humidity 0.172 0.330 -0.533 1 0.108
Windspeed 0.061 0.476 -0.339 0.108 1

Table 3.2: Correlation matrix

We can see from the Table 3.2 that temperature and humidity are positively
correlated with radon concentration, while pressure is negatively correlated with
radon concentration. The correlation coefficient of radon and windspeed is near
zero, indicating no significant correlation between radon and windspeed. tem-
perature and pressure are negatively correlated, meaning that as temperature in-
creases, pressure decreases, and vice versa. On the other hand, humidity and
windspeed have a positive correlation with temperature, indicating that as tem-
perature rises, humidity and windspeed also tend to increase. However, they
exhibit a negative correlation with pressure, indicating that as pressure decreases,
humidity and windspeed tend to rise.

We did our initial experiment on the full dataset and divided the data simply
into Non-Seismically Active (NSA) and Seismically Active (SA) samples. We in-
cluded the NSA data samples in the training set and SA samples in the testing
set. But after the experiment, we found that this strategy was not giving accept-
able prediction results, so we decided to change our approach and divide the
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dataset into different settings and window sizes. Our approach to dividing data
into various settings and time windows was inspired by the research conducted
by Adil Aslam Mir and Hadeel Alsolai, among others, as documented in their
work [18]. Since the authors’ work did not provide a specific strategy for dividing
the dataset into different settings, we made the decision to divide our data based
on the depth and magnitude of the earthquakes. This approach was chosen in
order to incorporate various scenarios into the evaluation of our machine learn-
ing models, thus ensuring a comprehensive performance testing process. Depth
and magnitude serve as crucial parameters for assessing the size and destructive
potential of earthquakes. To effectively analyze our seismic events, we initially
created a scatter plot that plotted the events based on these two parameters. Sub-
sequently, we divided the scatter plot into four quarters by utilizing the medians
of depth and magnitude as reference lines. This division allowed us to categorize
the seismic events into distinct quadrants, enabling a more detailed examination
and understanding of the data. This approach will create four different settings,
as shown in Figure 3.2

Figure 3.2: Scatter plot of seismic events using depth and magnitude parameter

The seismic events that fell within their respective quarters in the scatter plot
were assigned to the corresponding settings as testing sets. And, all other seis-
mic events, along with non-seismic events, were included in the training set. This
allocation was performed to ensure that each setting contained the appropriate
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seismic events for testing purposes, while the training set encompassed the re-
maining data points and non-seismic events. After assigning the seismic events
to their respective settings and training set, we proceeded to label the samples as
either "Seismically Active" (SA) or "Non-Seismically Active" (NSA) based on the
window size. In our study, we used four different window sizes, namely window
size 1, 2, 3, and 4. Window size 1 represented the labeling of the day prior to
the seismic event, the day of the seismic event, and the day following the seismic
event as SA. This same labeling approach was employed for window sizes 2, 3,
and 4, whereby the labeling encompassed a range of days before and after the
seismic event based on the respective window size. The incorporation of differ-
ent window sizes served the purpose of identifying anomalous periods preced-
ing or following seismic events. By employing varied window sizes, we aimed
to capture the time frame during which anomalies occur, enabling us to predict
earthquakes in advance. This approach allowed us to analyze and understand the
patterns and signals leading up to seismic events, facilitating the development of
predictive models for earthquake forecasting. As the window size increases, the
number of samples in the training set decreases, while the number of samples in
the testing set increases. Figure 3.8 visually illustrates the distribution of samples
in different settings and windows, highlighting the varying sample counts.

In Figure 3.3, the raw radon concentration measurements are presented along-
side the recorded earthquakes and their magnitudes over the data collection pe-
riod. Among the seismic events, one significant event of magnitude 5.3 Mw oc-
curred, while the remaining events ranged from magnitudes 3.1 Mw to 4.2 Mw.
The time series data for the environmental parameters can be observed in Figures
3.4 to 3.7.
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Figure 3.3: Time series data of Radon levels along with corresponding seismic
events and their magnitudes during the specified time period.
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Figure 3.4: Time series data of Temperature (C◦).
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Figure 3.5: Time series data of Pressure (mBar).
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Figure 3.6: Time series data of Humidity (%).
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Figure 3.7: Time series data of Windspeed (Km/h).
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Figure 3.8: Number of samples in training and testing set of different setting with
respect to window size ranging from 1 to 4

16



CHAPTER 4

Methods and Experiments

4.1 Data preprocessing methods

4.1.1 Empirical Mode Decomposition

The influence of environmental parameters on soil radon emission has been ob-
served, as well as the impact of earthquake-related stress-strain changes on radon
emissions preceding seismic events [15]. However, the presence of high fluctua-
tions and higher frequency components in radon time series poses a significant
challenge. To address this, it is essential to remove periodic components from the
soil radon time series [21].

To achieve this, we employed the Empirical Mode Decomposition (EMD) algo-
rithm to decompose the time series into different frequency components. These
components, known as Intrinsic Mode Functions (IMFs), represent signals with
distinct frequency modes. To eliminate periodicity, we applied the Fast Fourier
Transform (FFT) algorithm [5] to the IMFs and removed those with higher ampli-
tudes at 12-hour and 24-hour periods.

To identify the significant IMFs, two criteria were utilized. Firstly, we assessed
the correlation of the IMFs with the raw soil radon data. Secondly, we compared
the harmonic periods of all IMFs with the environmental parameters. These cri-
teria assisted in determining which IMFs were most relevant and informative for
further analysis.

Figure 4.1 displays the IMFs obtained from the radon time series decompo-
sition using the EMD algorithm. A total of 10 IMFs were generated. Table 4.1
provides the correlation values between the radon IMFs and the raw radon series.
Table 4.2 indicates whether the IMFs of the environmental parameters exhibit di-
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urnal (24 hour) or semi-diurnal (12 hour) periodicity.

Figure 4.1: Empirical mode decomposition (EMD)-Intrinsic mode function (IMFs
1-10) of Radon time series

Subsequently, we removed the IMFs that exhibited harmonic periodicity of 12
hours or 24 hours, considering all parameters including environmental parame-
ters and radon. Additionally, we discarded the radon IMFs with a correlation of
less than 0.2 with the raw radon data. For the reconstruction of the radon time
series data, we selected radon IMFs 1, 4, 5, 6, and 7, and reconstructed the data
by summing these IMFs. Similarly, for the reconstruction of the environmental
parameters, we removed the corresponding IMFs with 12-hour or 24-hour peri-
odicity and summed up the remaining IMFs. Refer to Figure 4.2 for a visualization
of the reconstructed time series.

IMFs 1 2 3 4 5 6 7 8 9 10
Harmonic Period 1.51 Hrs 12 Hrs 24 Hrs 3.53 Days 7.93 Days 16.05 Days 30.70 Days 88.28 Days 176.55 Days 706.22 Days

Corrleation Coefficients 0.22 0.20 0.35 0.29 0.36 0.35 0.46 0.35 0.41 0.29

Table 4.1: Harmonic periods and correlation coefficients (with raw radon data) of
radon imfs

18



Figure 4.2: Reconstructed Radon (Bq/m3), Temperature (C◦), Pressure (mBar),
Humidity (%), Windspeed (Km/h) 19



IMFs 1 2 3 4 5 6 7 8 9 10
Temperature 12,24 Hrs 12,24 Hrs No No No No No No - -

Pressure 12,24 Hrs 12,24 Hrs 24 Hrs No No No No No - -
Humidity 12,24 Hrs 12,24 Hrs 24 Hrs No No No No No No -

Windspeed 12 Hrs 12,24 Hrs 24 Hrs No No No No No No No

Table 4.2: Presence of diurnal and semi diurnal periodicity in IMFs of meteoro-
logical parameters

4.1.2 Synthetic Data Generation using Geometric Averaging (GA)

Over the course of the two-year data collection period, a total of 23 seismic events
occurred. Considering the approximately 730 days of data, only 23 days were
identified as seismic events. This highlights a scarcity of seismic data for train-
ing a machine learning model effectively. It is crucial to have unbiased data for
efficient predictions; however, in our case, the data is heavily skewed towards
non-seismic days. To address this limitation and augment the available seismic
events, we made the decision to employ synthetic data generation technique.

Geometric Averaging is the simple and efficient way to generate a synthetic
data. The geometric mean gives a central measure for a series of number. It is the
nth root of the product of n numbers [9]. A point wise weighted GA is considered
for the generation of new series. Let the weight vector W = (w1, w2, ..., wn). The
jth point in each of the input time series are x1(j), x2(j), ..., xn(j) where j denotes
the particular time instance. The jth point in the synthetic time series is given by
equation 4.1. To generate one seismic event time series we provided two original
seismic time series to the algorithm and then it took geometric average of both
input time series, which will generate new synthetic seismic event time series
which follows the pattern of input time series. The dependence of input time
series on synthetically generated time series is decided by the weight vector. In
our case vector size of weight is 2 × 1.

x(j) = (
n

∏
i=1

xi(j)wi)
1

∑n
i=1 wi = exp(∑n

i=1 wi ln xi(j)
∑n

i=1 wi
) (4.1)

After some experiment we come to the conclusion that it is better to make vi-
sual cluster of seismic event time series and then generate intra-cluster synthetic
data instead of all possible pair of original time series. If we go with the second
scenario; which is naive approach to make pairs, it may generate non-physical
data. These non-physical data can cause model to learn wrong scenarios, which
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may do not occur in nature. So it is better strategy to first make clusters on origi-
nal radon series and then do intra-cluster data generation. see Figure 4.3.

Figure 4.4 shows some samples of synthetically generated time series of every
parameters of dataset.
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Figure 4.3: Visual clustering of seismic event radon time series
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Figure 4.4: Synthetically generated Radon (Bq/m3), Temperature (C◦), Pressure
(mBar)
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Figure 4.5: Synthetically generated Humidity (%), Windspeed (Km/h)
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4.2 Machine Learning-based Prediction Models

4.2.1 Support Vector Regressor (SVR)

Support Vector Regressor (SVR) [8] is a machine learning algorithm used for re-
gression tasks. It aims to find a function that approximates the mapping from
input variables to continuous output values. The SVR approach involves map-
ping the input data into a higher-dimensional feature space using a kernel func-
tion, then finding the optimal hyperplane that best separates the data points while
maximizing the margin.

The mathematical formulation of SVR involves solving an optimization prob-
lem that seeks to minimize the empirical risk while controlling the complexity of
the model. The objective function [29] is defined as follows:

min
w,b,ξ,ξ∗

(
1
2
∥w∥2 + C

n

∑
i=1

(ξi + ξ∗i )

)
(4.2)

subject to the constraints:

yi − w · ϕ (xi)− b ≤ ϵ + ξ∗i ,
w · ϕ (xi) + b − yi ≤ ϵ + ξi,

ξi, ξ∗i ≥ 0,

where w represents the weight vector, b is the bias term, ξi and ξ∗i are slack
variables, xi and yi are the input features and corresponding output values, ϕ is
the feature mapping function, and ϵ denotes the maximum allowable deviation
from the true output.

The parameter C controls the trade-off between maximizing the margin and
minimizing the training error. Larger values of C lead to a smaller margin and a
more accurate fit to the training data, while smaller values of C result in a larger
margin but may introduce more errors.

By solving the optimization problem, SVR finds the optimal hyperplane in the
feature space that maximizes the margin while satisfying the given tolerance ϵ.
This allows SVR to make predictions for new input data based on their position
relative to the learned hyperplane.
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Overall, the SVR algorithm provides an effective approach for regression tasks
by leveraging support vectors and the concept of margin maximization. Further,
SVR can be used with different kernels [8]. In our experiments we have used lin-
ear and radial kernel with the SVR [8].

4.2.2 K-nearest neighbors (KNN)

The k-nearest neighbor (KNN) [11] regressor is a non-parametric machine learn-
ing algorithm used for regression tasks. It is based on the idea of finding the k
nearest data points in the training set to the input data point and using their tar-
get values to predict the target value of the input data point.

The KNN regressor works by calculating the distance between the input data
point and every data point in the training set. The distance metric used can be any
metric that measures the similarity between two data points, such as Euclidean
distance or Manhattan distance. The k-nearest neighbors of the input data point
are then selected based on their proximity to the input data point. Once the k-
nearest neighbors are identified, the KNN regressor uses their target values to
predict the target value of the input data point. This prediction is often the av-
erage or median of the target values of the k-nearest neighbors, although other
methods can be used as well.

KNN regressor is simple and easy to implement, but it can be computation-
ally expensive, especially when the training set is large. It is also sensitive to the
choice of distance metric and the value of k. In general, larger values of k tend
to smooth out the predictions, while smaller values of k tend to result in more
localized predictions. Overall, the KNN regressor is a useful tool for regression
tasks, especially when the underlying relationship between the input and target
variables is complex or nonlinear. In our case relationship between environmen-
tal parameter and radon concentration is highly nonlinear, so KNN is good choice
to start with.

4.2.3 Decision Tree

The decision tree regressor [3] is a supervised learning algorithm used for regres-
sion problems. It works by recursively splitting the training data into smaller
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subsets based on the feature values. At each internal node of the tree, a feature
and a threshold value are selected, and the data is partitioned based on whether
the feature value is less than or greater than the threshold value. The splitting pro-
cess is continued until a stopping criterion is met, such as reaching a maximum
depth or having too few samples in a node.

The decision tree can be represented by a binary tree, where each internal node
represents a splitting decision and each leaf node represents a predicted output
value. Given a new input sample, the decision tree algorithm traverses the tree
from the root to a leaf node based on the feature values of the input. The predicted
output is then the output value associated with the reached leaf node.

The decision tree regressor can be expressed mathematically as follows:

Let X = x1, x2, ..., xn be the training data, where each xi is a m-dimensional fea-
ture vector, and y = y1, y2, ..., yn be the corresponding target values. The decision
tree regressor learns a function f (·) that maps a feature vector x to a predicted
output value y.

The decision tree model can be represented as a set of binary decision rules
that partition the feature space into rectangular regions. Let T be the binary deci-
sion tree, and t be an internal node in T. For a feature vector x, let jt and st denote
the feature index and threshold value at node t. Then, the binary decision rule at
node t is:

ji ∈ {1, 2, ..., m} st ∈ R if xjt ≤ st, tghen go left, else go right

Let Rt(x) denote the rectangular region defined by the binary decision rules
from the root of the tree to node t. Then, the predicted output value at leaf node t
is given by:

f (x) = ∑
t:x∈Rt

ct (4.3)

where ct is the output value associated with leaf node t.
The goal of the decision tree regressor is to learn the binary decision rules and

output values that minimize the mean squared error (MSE) between the predicted
and true target values on the training data:
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minimize
1
n

n

∑
i=1

(yi − f (xi))
2 (4.4)

This optimization problem is typically solved using a top-down greedy ap-
proach called recursive binary splitting. Starting from the root node, the algo-
rithm searches for the best feature and threshold value that minimize the MSE on
the training data. The data is then split into two subsets based on the selected fea-
ture and threshold value, and the process is repeated recursively on each subset
until a stopping criterion is met.

The decision tree regressor has several hyperparameters that can be tuned to
control the complexity of the tree, such as the maximum depth, minimum number
of samples required to split a node, and minimum number of samples required to
be at a leaf node. Overfitting can be a concern with decision trees, as the model
can become too complex and fit the noise in the training data.

4.2.4 Random Forest

The Random Forest Regressor [4] is a machine learning algorithm used for regres-
sion tasks. It is an ensemble learning method that combines multiple decision
trees to make predictions. Each tree in the forest is trained on a random subset of
the data, and the final prediction is obtained by averaging or taking the majority
vote of the individual tree predictions.

The mathematical formulation of the Random Forest Regressor involves train-
ing a collection of decision trees. Each decision tree is constructed based on a
subset of the training data and a random subset of the features. The prediction of
an individual decision tree is denoted as ŷi, and the final prediction of the Ran-
dom Forest Regressor is obtained by averaging the predictions of all the trees.
Mathematically, the prediction of the Random Forest Regressor for a given input
vector x can be represented as:

ŷ =
1
N

N

∑
i=1

ŷi (4.5)

where N represents the number of trees in the forest.

The Random Forest Regressor also provides an estimate of the uncertainty as-
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sociated with the predictions, often referred to as the prediction variance. This
can be calculated using the variance of the individual tree predictions:

Var (ŷ) =
1
N

N

∑
i=1

(ŷi − ŷ)2 (4.6)

Overall, the Random Forest Regressor combines the predictions of multiple
decision trees to provide a robust and accurate regression model [?]. By leverag-
ing the diversity of the individual trees, it can effectively handle nonlinear rela-
tionships and capture complex patterns in the data.

4.2.5 Gradient Boosting Machine (GBM)

Gradient Boosting Machine (GBM) regressor [12] is a powerful machine learning
algorithm used for regression tasks. It is based on the idea of combining multi-
ple weak regression models to create a strong overall model. Each weak model is
trained on the residuals of the previous model, which are the differences between
the actual target values and the predicted values of the previous model. Mathe-
matically, GBM can be expressed as follows:

Given a training set of input features xi and target values yi, where i = 1, 2, ..., n,
and a loss function L(y, f (x)) that measures the difference between the true target
value y and the predicted value f (x), the objective of GBM is to find a function
F(x) that minimizes the following loss function:

L(y, F(x)) = sum(L(yi, F(xi)))

The GBM regressor works by iteratively adding new weak models to the en-
semble, each of which is trained on the negative gradients of the loss function
with respect to the current predictions. Specifically, at each iteration t, a new weak
model ft(x) is trained to minimize the following loss function:

Lt = sum(L(yi, Ft−1(xi) + ft(xi)))

where Ft−1(xi) is the prediction of the ensemble at iteration t-1.

Once the new model ft(x) is trained, its predictions are added to the ensemble
by updating the previous predictions with a learning rate parameter γ:
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Ft(x) = Ft−1(x) + γ ft(x)

This process is repeated for a specified number of iterations or until a desired
level of accuracy is achieved.

GBM is known for its high accuracy and ability to handle complex nonlinear
relationships between the input and target variables. However, it can be com-
putationally expensive and prone to overfitting if the number of iterations or the
learning rate is too high. In practice, cross-validation and regularization tech-
niques are often used to optimize the hyperparameters of the GBM model.

4.2.6 Extreme Gradient Boosting (XGBoost)

XGBoost (Extreme Gradient Boosting) [6] is a popular machine learning algorithm
for regression, classification, and ranking tasks. It is an ensemble method that
combines multiple weak models (decision trees) to create a strong model. The
mathematical expression for XGBoost regressor is as follows:

Given a training dataset with n instances and m features, let X = x1, x2, ..., xn

denote the feature matrix, and y = y1, y2, ..., yn denote the corresponding target
values. We aim to learn a function f (x) that maps the input features to the output
targets. The XGBoost regressor works by iteratively adding decision trees to the
model. At each iteration, a new decision tree is fit to the negative gradient of the
loss function with respect to the current predictions. The loss function is typically
chosen to be the mean squared error (MSE) for regression tasks.

Let Ft(x) denote the predicted target values at iteration t, and rit = yi −
Ft−1(xi) denote the residual errors. The goal of XGBoost is to minimize the fol-
lowing objective function:

L(t) =
n

∑
i=1

(yi − Ft−1(xi)− ht(xi))
2 + Ω(ht) (4.7)

where ht(x) is the t-th decision tree, and Ω(ht) is a regularization term that
penalizes complex models. The regularization term is typically defined as:
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Ω(ht) = γT +
1
2

λ
T

∑
j=1

w2
j (4.8)

where T is the number of leaf nodes in the tree, wj is the weight of the j-th leaf
node, and γ and λ are hyperparameters that control the strength of regularization.

The XGBoost algorithm works by iteratively adding decision trees to the model.
At each iteration, a new decision tree ht(x) is fit to the negative gradient of the loss
function with respect to the current predictions, using a technique called gradient
boosting. The final prediction is then obtained by summing the predictions of all
the trees:

F(x) =
T

∑
t=1

ht(x) (4.9)

where T is the total number of trees in the model. The optimal values of the
hyperparameters γ and λ are typically chosen through cross-validation.

4.3 Performance metrics

To evaluate the accuracy of predictions for radon concentration (RN) based on
attributes such as temperature, pressure, humidity, and windspeed, various com-
monly used performance metrics are computed. One frequently used metric is the
Root Mean Squared Error (RMSE), which is commonly applied to prediction mod-
els in various fields. RMSE is sensitive to outliers, as a large difference between
actual and predicted values has a significant impact on its value. The RMSE can
be calculated using the following Equation 4.10:

RMSE =

√√√√ 1
V

V

∑
n=1

(yn − ŷn)
2 (4.10)

Here, V represents the total number of samples,
yn represents the actual measured radon concentration value of nth sample,
ŷn represents the predicted radon concentration value of nth sample.

When calculating RMSE, the presence of outliers can greatly affect the error term.
In such cases, the Root Mean Squared Logarithmic Error (RMSLE) can be used to
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mitigate the influence of outliers. RMSLE is calculated using the Equation 4.11.

RMSLE =

√√√√ 1
V

V

∑
n=1

(log (yn + 1)− log (ŷn + 1))2 (4.11)

Again, V represents the total number of samples.

RMSLE is particularly useful when the predicted and actual values have a
wide range and when there are outliers. It scales down the effect of outliers and
nullifies their impact.

Another frequently used performance metric is the Mean Absolute Percentage
Error (MAPE), which assesses the accuracy of a prediction model. MAPE is com-
puted as the average of the absolute percentage errors and is given by Equation
4.12

MAPE =
1
V

V

∑
n=1

∣∣∣∣yn − ŷn

yn

∣∣∣∣ (4.12)

MAPE is popular due to its scale independence and easy interpretation. How-
ever, it has some limitations, such as producing undefined or infinite values when
the actual values are close to zero or equal to zero. Magnitudes less than 1 for
actual values can yield higher percentage MAPE values, while actual zero values
result in infinite MAPE values.

Percentage Bias (PB) describes the tendency of predicted values to be consis-
tently larger or smaller than their corresponding actual values. PB is computed
using the following equation, based on V samples:

PB = 100 × ∑V
n=1 (ŷn − yn)

∑V
n=1 yn

(4.13)

Positive PB values indicate an overestimation bias, while negative values in-
dicate an underestimation bias. A PB value of 0 represents an accurate model
simulation.

These performance metrics provide insights into the accuracy and fit of regres-
sion models for predicting radon concentration. Each metric has its own advan-
tages and limitations, and the choice of metric depends on the specific require-
ments and characteristics of the prediction problem at hand. We have used all
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metrics in out experiments for better analysis of model performance.

The overall flow of our work is given in Figure 4.6

Setting 
No. 1

Setting 
No. 2

Setting 
No. 3

Setting 
No. 4

Raw Dataset

Pre-Processing

Training Set         
NSA + 

SA(Q2,3,4)

Testing Set          
SA(Q1)

Training Set         
NSA + 

SA(Q1,3,4)

Testing Set          
SA(Q2)

Training Set         
NSA + 

SA(Q1,2,4)

Testing Set          
SA(Q3)
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NSA + 

SA(Q1,2,3)

Testing Set          
SA(Q4)

Separate ML 
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Random 
Forest 

Regerssor

Models
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(XGBoost)

Decision 
Tree 
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Figure 4.6: Methodology Flowchart illustrating the step-by-step process for data
collection, preprocessing, feature selection, model training, and evaluation.
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CHAPTER 5

Results and Discussion

The present study conducted a series of experiments to investigate the predic-
tion of seismic events using radon time series data and machine learning models.
In Experiment 1, the original dataset was utilized, and various models such as
SVR linear, radial kernel, Random Forest, K-nearest neighbor, Gradient Boosting
Machine, and Extreme Gradient Boosting were trained and evaluated. Experi-
ment 2 involved augmenting the original dataset with synthetic seismic data and
focused on K-nearest neighbor and Extreme Gradient Boosting models. The in-
clusion of gradient features in Experiment 2 further enhanced the performance of
the models. Experiment 3 explored the application of Empirical Mode Decompo-
sition (EMD) to reconstruct the radon data, but due to issues with maintaining
the original value range, EMD was excluded from subsequent experiments. In
Experiment 4, a segmented and resampled dataset was used, achieving satisfac-
tory results compared to previous experiments. Additionally, anomaly detection
based on mean and standard deviation was employed to identify deviations in
radon measurements prior to seismic events. Figure 5.1 provides an overview of
the experimental structure and summarizes the key findings of the study.

The findings revealed that the models were able to identify anomalies before
several seismic events, indicating their potential as an early warning system. The
analysis showed that anomalies in radon measurements were detected prior to
eight out of thirteen seismic events, and the model accurately captured variations
outside the confidence bounds. However, the effectiveness of the approach var-
ied depending on the specific event and the number of anomalous measurements
observed.Overall, these findings demonstrate the capability of machine learning
models in predicting seismic events using radon time series data and emphasize
the significance of monitoring radon measurements for earthquake detection. Fig-
ure 5.1 provides a comprehensive summary of the conducted experiments and
their corresponding results, which will be presented in detail in the subsequent
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sections.

5.1 Experiment 1: Original dataset trained on SVR lin-

ear, radial kernel, Random Forest, K nearest neigh-

bor, Gradient Boosting Machine and Extreme gra-

dient boosting algorithms

In the first experiment, the original dataset was utilized. To address the specific
requirements of the study, the dataset was resampled from a 10-minute interval to
a 40-minute interval. Furthermore, in order to ensure comparability and enhance
the performance of the Support Vector Regression (SVR) linear and radial kernel
models, all the features were normalized using z-score normalization.

For the purpose of analysis, only seismic events with a magnitude greater than
3.8 were considered as seismically active samples, while other seismic events were
categorized as non-seismic events. This selection criterion aimed to focus on sig-
nificant seismic events and distinguish them from less significant ones, providing
a more targeted analysis.

In all of the Figures from 5.2 to 5.8 presented, the red line represents the pre-
dicted radon concentration values, while the black line represents the actual mea-
sured radon values. From the analysis of the results figures, it is evident that the
SVR models with linear and radial kernels perform poorly in this specific exper-
iment setup. However, the ensemble models such as Gradient Boosting Machine
(GBM) and XGBoost demonstrate satisfactory performance. Interestingly, even
the simple machine learning model K-Nearest Neighbors (KNN) yields similar
results to these ensemble models. The detailed tables presenting the performance
metrics can be found in the appendix section of the thesis.
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Experiment 1
Dataset: Original raw data

Features: Environmental parameters

Sample Interval: 40 Minutes

Test data: Seismic events >= 3.8 Mw

Experiment 2
Dataset: Original + Synthetic data

Features (Phase 1): Environmental 

parameters 

Features (Phase 2): Gradients of each 

environmetal paramters along with original 

features

Sample Interval: 40 Minutes

Test data: Seismic events >= 3.8 Mw

Experiment 3
Dataset: Reconstructed radon data

    using EMD method

Features: Original Environmental 

parameters

Sample Interval: 40 Minutes

Test data: Seismic events >= 3.8 Mw

Experiment 4
Dataset: Segmented and resampled     

dataset

Features: Environmental parameters

Sample Interval: 60 Minutes

Test data: All seismic events

Improved results

Rejected

Improved and Acceptable 
results

Anomaly Detection on Experiment 4 
results

Figure 5.1: Overview of Experimental Strategy and Path for Conducting the Ex-
periments
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(a) Setting 1 Window 4 (b) Setting 2 Window 4

(c) Setting 3 Window 4 (d) Setting 4 Window 4

Figure 5.2: Results of SVR linear kernel on window 4

(a) Setting 1 Window 4 (b) Setting 2 Window 4

(c) Setting 3 Window 4 (d) Setting 4 Window 4

Figure 5.3: Results of SVR radial kernel on window 4
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(a) Setting 1 Window 4 (b) Setting 2 Window 4

(c) Setting 3 Window 4 (d) Setting 4 Window 4

Figure 5.4: Results of Random Forest regressor on window 4

5.2 Experiment 2: Original dataset with synthetically

generated dataset trained on K nearest neighbor

(KNN) and Extreme gradient boosting (XGBoost)

algorithms

In Experiment 2, the original dataset was augmented with synthetic seismic data,
while keeping the experimental settings similar to the previous experiment. Based
on the unsatisfactory results obtained from other models, we decided to focus
on using only two models: K-Nearest Neighbors (KNN) and XGBoost. Among
the three models tested (KNN, Gradient Boosting Machine, and XGBoost), KNN,
and XGBoost demonstrated satisfactory results. The results of GBM and XGBoost
were comparable, but GBM required more training time compared to XGBoost.
Therefore, we opted to proceed with XGBoost as our chosen model. Consequently,
the experiment was carried out using KNN and XGBoost models for further anal-
ysis.

In Phase 1 of Experiment 2, the machine learning models were trained using
only the environmental parameters as input. However, in Phase 2 of Experiment
2, we extended the feature set by including the gradients (first-order derivatives)
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(a) KNN on Setting 1
Window 1

(b) GBM on Setting 1
Window 1

(c) XGB on Setting 1
Window 1

(d) KNN on Setting 1
Window 2

(e) GBM on Setting 1
Window 2

(f) XGB on Setting 1
Window 2

(g) KNN on Setting 1
Window 3

(h) GBM on Setting 1
Window 3

(i) XGB on Setting 1
Window 3

(j) KNN on Setting 1
Window 4

(k) GBM on Setting 1
Window 4

(l) XGB on Setting 1
Window 4

Figure 5.5: Results of KNN, GBM and XGBoost on setting 1 and all windows
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(a) KNN on Setting 2
Window 1

(b) GBM on Setting 2
Window 1

(c) XGB on Setting 2
Window 1

(d) KNN on Setting 2
Window 2

(e) GBM on Setting 2
Window 2

(f) XGB on Setting 2
Window 2

(g) KNN on Setting 2
Window 3

(h) GBM on Setting 2
Window 3

(i) XGB on Setting 2
Window 3

(j) KNN on Setting 2
Window 4

(k) GBM on Setting 2
Window 4

(l) XGB on Setting 2
Window 4

Figure 5.6: Results of KNN, GBM and XGBoost on setting 2 and all windows
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(a) KNN on Setting 3
Window 1

(b) GBM on Setting 3
Window 1

(c) XGB on Setting 3
Window 1

(d) KNN on Setting 3
Window 2

(e) GBM on Setting 3
Window 2

(f) XGB on Setting 3
Window 2

(g) KNN on Setting 3
Window 3

(h) GBM on Setting 3
Window 3

(i) XGB on Setting 3
Window 3

(j) KNN on Setting 3
Window 4

(k) GBM on Setting 3
Window 4

(l) XGB on Setting 3
Window 4

Figure 5.7: Results of KNN, GBM and XGBoost on setting 3 and all windows
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(a) KNN on Setting 4
Window 1

(b) GBM on Setting 4
Window 1

(c) XGB on Setting 4
Window 1

(d) KNN on Setting 4
Window 2

(e) GBM on Setting 4
Window 2

(f) XGB on Setting 4
Window 2

(g) KNN on Setting 4
Window 3

(h) GBM on Setting 4
Window 3

(i) XGB on Setting 4
Window 3

(j) KNN on Setting 4
Window 4

(k) GBM on Setting 4
Window 4

(l) XGB on Setting 4
Window 4

Figure 5.8: Results of KNN, GBM and XGBoost on setting 4 and all windows

42



of these environmental parameters along with the original environmental param-
eters to train the models.

The inclusion of gradients aimed to incorporate the sequential characteris-
tics inherent in time series data. It is well-known that sequential features play
a crucial role in the analysis of time series data. The performance of the XGBoost
model showed improvement when incorporating gradient features in the Setting
1 dataset. Similarly, both the KNN and XGBoost models demonstrated enhanced
performance in Setting 2 and Setting 3 when using window sizes of 2, 3, and 4,
along with gradient features. Please refer to Tables B.1 to B.16 in appendix section
for detailed information and results.

5.2.1 Model trained on environmental parameters

(a) Setting 1 Window 1 (b) Setting 1 Window 2

(c) Setting 1 Window 3 (d) Setting 1 Window 4

Figure 5.9: Results of KNN on Setting 1 and all Windows
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(a) Setting 2 Window 1 (b) Setting 2 Window 2

(c) Setting 2 Window 4 (d) Setting 2 Window 4

Figure 5.10: Results of KNN on Setting 2 and all Windows

(a) Setting 3 Window 1 (b) Setting 3 Window 2

(c) Setting 3 Window 3 (d) Setting 3 Window 4

Figure 5.11: Results of KNN on Setting 3 and all Windows
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(a) Setting 4 Window 1 (b) Setting 4 Window 2

(c) Setting 4 Window 3 (d) Setting 4 Window 4

Figure 5.12: Results of KNN on Setting 4 and all Windows

(a) Setting 1 Window 1 (b) Setting 1 Window 2

(c) Setting 1 Window 3 (d) Setting 1 Window 4

Figure 5.13: Results of XGB on Setting 1 and all Windows
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(a) Setting 2 Window 1 (b) Setting 2 Window 2

(c) Setting 2 Window 4 (d) Setting 2 Window 4

Figure 5.14: Results of XGB on Setting 2 and all Windows

(a) Setting 3 Window 1 (b) Setting 3 Window 2

(c) Setting 3 Window 3 (d) Setting 3 Window 4

Figure 5.15: Results of XGB on Setting 3 and all Windows
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(a) Setting 4 Window 1 (b) Setting 4 Window 2

(c) Setting 4 Window 3 (d) Setting 4 Window 4

Figure 5.16: Results of XGB on Setting 4 and all Windows

5.2.2 Model trained on environmental parameters and gradient

of these parameters

(a) Setting 1 Window 1 (b) Setting 1 Window 2

(c) Setting 1 Window 3 (d) Setting 1 Window 4

Figure 5.17: Results of KNN on Setting 1 and all Windows (Gradient features
included)
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(a) Setting 2 Window 1 (b) Setting 2 Window 2

(c) Setting 2 Window 4 (d) Setting 2 Window 4

Figure 5.18: Results of KNN on Setting 2 and all Windows (Gradient features
included)

(a) Setting 3 Window 1 (b) Setting 3 Window 2

(c) Setting 3 Window 3 (d) Setting 3 Window 4

Figure 5.19: Results of KNN on Setting 3 and all Windows (Gradient features
included)
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(a) Setting 4 Window 1 (b) Setting 4 Window 2

(c) Setting 4 Window 3 (d) Setting 4 Window 4

Figure 5.20: Results of KNN on Setting 4 and all Windows (Gradient features
included)

(a) Setting 1 Window 1 (b) Setting 1 Window 2

(c) Setting 1 Window 3 (d) Setting 1 Window 4

Figure 5.21: Results of XGBoost on Setting 1 and all Windows (Gradient features
included)
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(a) Setting 2 Window 1 (b) Setting 2 Window 2

(c) Setting 2 Window 3 (d) Setting 2 Window 4

Figure 5.22: Results of XGBoost on Setting 2 and all Windows (Gradient features
included)

(a) Setting 3 Window 1 (b) Setting 3 Window 2

(c) Setting 3 Window 3 (d) Setting 3 Window 4

Figure 5.23: Results of XGB on Setting 3 and all Windows (Gradient features in-
cluded)
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(a) Setting 4 Window 1 (b) Setting 4 Window 2

(c) Setting 4 Window 3 (d) Setting 4 Window 4

Figure 5.24: Results of XGB on Setting 4 and all Windows (Gradient features in-
cluded)

5.3 Experiment 3: Reconstructed radon data and orig-

inal environmental parameters trained on K near-

est neighbor and Extreme Gradient Boosting algo-

rithms

In Experiment 3, we applied the Empirical Mode Decomposition (EMD) method
as discussed in Section 4.1.1 to reconstruct our radon data. The purpose of recon-
struction was to eliminate the higher frequency components present in the radon
time series data. It is generally necessary to remove high frequency components
from time series data to facilitate better analysis. With this objective in mind, we
opted to use the EMD method, which decomposes the time series into various
Intrinsic Mode Functions (IMFs) ranging from higher to lower frequencies.

To reconstruct the radon time series, we removed the IMFs containing diurnal
and/or semidiurnal periodicity and then summed up the remaining IMFs. How-
ever, we encountered an issue with this approach: the original value range of the
radon data was lost. Maintaining the original range of values is important for ac-
curate predictions and analysis. Figure 5.25 clearly illustrates a notable change in
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the prediction range of radon concentration after applying the EMD-based recon-
struction. Initially, the minimum value was 0; however, post-reconstruction, the
minimum value ranged from approximately -2000 to -3000. Such values cannot be
directly compared with the original radon measurements during real-time earth-
quake prediction system. Consequently, we made the decision to exclude EMD as
a preprocessing step for subsequent experiments.

Nevertheless, in future research, efforts could be directed towards addressing
this issue and devising a solution to maintain the original value range. Once re-
solved, incorporating EMD as a preprocessing strategy may prove beneficial for
enhancing the efficiency of radon prediction.

(a) Setting 1 Window 4 (KNN) (b) Setting 1 Window 4 (XGBoost)

Figure 5.25: Results of KNN and XGBoost on reconstructed radon time series
(setting 1 window 4)
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5.4 Experiment 4: Original segmented, resampled dataset

trained on SVR linear, radial kernel, Random For-

est, K nearest neighbor and Extreme gradient boost-

ing algorithms

The results obtained from the previous experiments showed gradual improve-
ment as we made changes to various experimental parameters. However, these
results did not meet the acceptance criteria set by domain expert. In contrast, Ex-
periment 4 yielded satisfactory outcomes, which were considered acceptable by
the domain expert. And, the performance metrics of Experiment 4 outperformed
those of previous experiments.

For Experiment 4, we made the decision to segment the data and solely uti-
lize the samples recorded from January 22, 2020, to April 16, 2021. Initially, the
dataset encompassed samples from January 22, 2020, to December 28, 2021. How-
ever, based on the advice of domain experts, we excluded the latter portion of the
dataset due to its random nature, characterized by high random fluctuations and
sudden changes. By removing this segment, we obtained a segmented dataset for
further analysis and investigation.

As part of our data preprocessing in Experiment 4, we opted to resample the
original data into 60-minute intervals. This involved converting the original 10-
minute sample interval data into 60-minute samples by averaging six consecutive
rows. The purpose of this resampling was to remove the impact of high random
fluctuations and achieve a smoother dataset for improved analysis. Subsequently,
we evaluated both the 40-minute and 60-minute resampled data using various
machine learning models. Remarkably, the 60-minute resampled data outper-
formed the 40-minute resampled data in terms of model performance.

A significant change incorporated in our final experiment was the inclusion of
all earthquakes in the test data. Previously, only seismic events with a magnitude
greater than or equal to 3.8 were considered. However, after including smaller
earthquakes (with magnitudes ranging from 3 to 3.5), the results for the testing
data improved noticeably. This demonstrates that machine learning models are
more capable of predicting radon concentrations during small earthquakes rather
than large earthquakes.
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Notably, the results for Setting 3 and Setting 4 exhibited better performance
compared to Setting 1 and Setting 2. This is primarily because Settings 3 and 4
contains radon samples of low magnitude earthquakes. Figure 3.2 illustrates that
Settings 3 and 4 primarily consisted of seismic events with magnitudes ranging
from 3.1 to 3.7 Mw.

Figures 5.26 to 5.41 demonstrate the excellent performance of Support Vector
Regression (SVR) with radial kernel, K Nearest Neighbors (KNN), and XGBoost
models across various settings and window sizes. These models consistently
yielded accurate predictions for radon concentrations. Particularly, the prediction
results for Setting 3 and Setting 4 datasets were highly efficient. Figures 5.34 to
5.41 shows the overlapping between the measured radon concentration and the
corresponding predicted radon concentration. The red line represents the mea-
sured radon values, while the black line represents the predicted radon values.
This visual representation effectively illustrates the accuracy of the predictions, as
the measured and predicted radon concentrations align closely.
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(a) SVR linear and radial kernel on Setting 1 and Window 1
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Figure 5.26: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 1 window 1)
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(a) SVR linear and radial kernel on Setting 1 and Window 2
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Figure 5.27: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 1 window 2)
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(a) SVR linear and radial kernel on Setting 1 and Window 3
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(b) KNN, Random Forest and XGBoost on Setting 1 and Window 3

Figure 5.28: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 1 window 3)
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(a) SVR linear and radial kernel on Setting 1 and Window 4
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(b) KNN, Random Forest and XGBoost on Setting 1 and Window 4

Figure 5.29: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 1 window 4

58



0 50 100 150
Samples

2000

4000

6000

Ra
do

n 
co

nc
en

tra
tio

n

SVR linear kernel

0 50 100 150
Samples

2000

4000

6000

Ra
do

n 
co

nc
en

tra
tio

n

SVR Radial kernel

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(a) SVR linear and radial kernel on Setting 2 and Window 1
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Figure 5.30: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 2 window 1)
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(a) SVR linear and radial kernel on Setting 2 and Window 2
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(b) KNN, Random Forest and XGBoost on Setting 2 and Window 2

Figure 5.31: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 2 window 2)
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(a) SVR linear and radial kernel on Setting 2 and Window 3
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Figure 5.32: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 2 window 3)
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(a) SVR linear and radial kernel on Setting 2 and Window 4
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Figure 5.33: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 2 window 4
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(a) SVR linear and radial kernel on Setting 3 and Window 1

0 100 200 300
Samples

1000

2000

3000

4000

5000

6000

Ra
do

n 
co

nc
en

tra
tio

n

KNN

0 100 200 300
Samples

1000

2000

3000

4000

5000

6000

Ra
do

n 
co

nc
en

tra
tio

n

Random Forest(bagged cart)

0 100 200 300
Samples

1000

2000

3000

4000

5000

6000

Ra
do

n 
co

nc
en

tra
tio

n

XGBoost(boosted model)
Setting 3 Window 1

(b) KNN, Random Forest and XGBoost on Setting 3 and Window 1

Figure 5.34: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 3 window 1
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(a) SVR linear and radial kernel on Setting 3 and Window 2
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Figure 5.35: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 3 window 2
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(a) SVR linear and radial kernel on Setting 3 and Window 3
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Figure 5.36: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 3 window 3
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(a) SVR linear and radial kernel on Setting 3 and Window 4
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Figure 5.37: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 3 window 4
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(a) SVR linear and radial kernel on Setting 4 and Window 1

0 50 100 150 200
Samples

1000

2000

3000

4000

5000

6000

Ra
do

n 
co

nc
en

tra
tio

n

KNN

0 50 100 150 200
Samples

1000

2000

3000

4000

5000

6000

Ra
do

n 
co

nc
en

tra
tio

n

Random Forest(bagged cart)

0 50 100 150 200
Samples

1000

2000

3000

4000

5000

6000

Ra
do

n 
co

nc
en

tra
tio

n

XGBoost(boosted model)
Setting 4 Window 1

(b) KNN, Random Forest and XGBoost on Setting 4 and Window 1

Figure 5.38: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 4 window 1
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(a) SVR linear and radial kernel on Setting 4 and Window 2
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Figure 5.39: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 4 window 2
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(a) SVR linear and radial kernel on Setting 4 and Window 3
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Figure 5.40: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 4 window 3
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(a) SVR linear and radial kernel on Setting 4 and Window 4
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Figure 5.41: Results of SVR linear, rbf kernel, Random Forest, KNN and XGBoost
on setting 4 window 4
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5.5 Anomaly Detection in Radon Time Series Data: A

Comparison of Predicted and Original Data using

Simple Mean and Standard Deviation Method

To establish confidence bounds for our predictions, we employed the simple mean
and standard deviation method. Initially, the mean and standard deviation of the
predicted radon values were calculated. Subsequently, we determined the upper
bound of the confidence interval as µ + 2σ and the lower bound as µ − 2σ.

Any measured radon value that fell outside this confidence bound was identi-
fied as an anomaly. This approach allowed us to detect and flag anomalous radon
measurements based on their deviation from the expected range determined by
the mean and standard deviation of the predicted values. The presence of anoma-
lies in radon measurements occurring several days prior to seismic events can
serve as an early warning indication. Such anomalous readings can alert us to
an impending seismic event. This finding highlights the potential utility of mon-
itoring radon measurements as an effective alarm system for identifying seismic
activity in advance.

The analysis of Figures 5.42 to 5.45 reveals that our model successfully iden-
tified anomalies preceding 8 out of 13 seismic events. Figure 5.42 illustrates that
for all seismic events, the radon measurements exhibited anomalous values prior
to the earthquakes. In the case of the first two seismic events, the radon mea-
surements were notably higher, surpassing the upper bound of the confidence
interval. Conversely, the last two events displayed lower radon measurements,
falling below the lower bound of the confidence interval.

Figure 5.43 demonstrates our ability to detect the anomaly before a significant
seismic event, which was of magnitude 5.3. In the third figure, we observed an
anomaly preceding only one out of four seismic events. Figure 5.45 displayed
anomalies prior to two out of three seismic events. However, for the last seismic
event, only a single anomalous value was detected beforehand, which may not
provide full confidence in predicting future earthquake. Furthermore, it is im-
portant to note that some seismic events displayed anomalous radon values even
after the event. This may be due to the lasting effects of the earthquake, which
influenced the radon measurements in the surrounding environment.
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These findings highlight the model’s capability to identify anomalies preced-
ing seismic events, although the effectiveness may vary depending on the specific
event and the number of anomalous measurements detected.

Figure 5.42: Anomaly Detection: Setting 1 and Window 4

Figure 5.43: Anomaly Detection: Setting 2 and Window 4
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Figure 5.44: Anomaly Detection: Setting 3 and Window 4

Figure 5.45: Anomaly Detection: Setting 4 and Window 4
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CHAPTER 6

Conclusion

In conclusion, this thesis aimed to investigate the relationship between radon con-
centration and seismic events for the purpose of earthquake prediction. We con-
ducted a series of experiments using various machine learning models and ex-
plored different preprocessing techniques to enhance the accuracy of radon pre-
dictions.

Through our experiments, we observed several key findings. Firstly, incor-
porating synthetically generated seismic data with the original dataset has im-
proved the results significantly. Secondly, inclusions of extra features, such as the
first-order derivatives(gradients) of environmental parameters, proved beneficial
in capturing the sequential nature of time series data. This led to improved per-
formance in radon prediction models.

Furthermore, we examined the impact of data segmentation and resampling
on model performance. Segmentation allowed us to focus on a specific time pe-
riod of the dataset, excluding potentially noisy or erratic data. Resampling the
data into larger time intervals, such as 60 minutes, effectively smoothed out ran-
dom fluctuations, resulting in enhanced model performance.

Moreover, we investigated the use of anomaly detection techniques to iden-
tify abnormal radon measurements prior to seismic events. Our results showed
promising potential in using these anomalies as early warning signs of impending
earthquakes. This highlights the importance of radon monitoring as a potential
alarm system for seismic activity.

In terms of model selection, we found that Support Vector Regression with
radial kernel, K-nearest neighbor, Gradient Boosting Machine and XGBoost con-
sistently yielded excellent results across various settings and window sizes. These
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models demonstrated their capability to accurately predict radon concentrations,
particularly during seismic events.

However, it is important to note that further improvements can be made. Fu-
ture research could focus on refining the anomaly detection algorithms and ex-
ploring additional preprocessing techniques to enhance the accuracy and relia-
bility of radon predictions. Additionally, the incorporation of more diverse envi-
ronmental parameters and the consideration of other external factors could pro-
vide valuable insights into the complex relationship between radon concentration
and seismic events. One can extend this work further by incorporating more effi-
cient deep learning models like Artificial Neural Network (ANN), Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN), Long Short Term
Model (LSTM) for the better radon time series prediction.

In conclusion, this thesis contributes to the field of earthquake prediction by
demonstrating the effectiveness of machine learning models and preprocessing
techniques in forecasting radon concentrations. The results obtained provide valu-
able insights and lay the foundation for future advancements in the field. By con-
tinuing to explore and refine these methods, we can improve our understanding
of radon dynamics and further enhance our ability to predict seismic events with
greater accuracy and reliability.
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works in simulating radon levels in soil gas. Chemical Geology, 270(1):1–8,
2010.

[27] V. I. Ulomov and B. Z. Mavashev. A precursor of a strong tectonic earthquake.
176:9–11, 1967.

[28] V. I. Ulomov, A. I. Zakharovc, and N. V. Ulomova. Tashkent earthquake of
april 26, 1966, and its aftershocks. 177:567–570, 1967.

[29] V. N. Vapnik. The Nature of Statistical Learning Theory. Information Science
and Statistics (ISS). Springer, 2013.
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CHAPTER A

Experiment 1: Performance metrics tables

A.1 Results of Setting 1 Dataset

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1763.079 1.2115 2.410 102.156
SVR with RBF kernel 1362.790 1.0393 1.7916 62.4114

Random forest regressor 1566.4525 1.0190 1.74971 72.4987
KNN regressor 1521.047 1.0447 1.8453 78.4474

Gradient Boosting Machine 1562.5684 0.9985 1.6773 73.903
XGBoost 1562.5684 0.9985 1.6773 73.903

Table A.1: Performance of ML models on Setting1 and Window1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1798.032 1.143 2.172 82.189
SVR with RBF kernel 1473.1004 1.0095 1.7000 50.7488

Random forest regressor 1809.3301 1.0753 1.8574 56.4338
KNN regressor 1782.5615 1.088 1.9878 74.7393

Gradient Boosting Machine 1562.5684 0.9985 1.6773 73.903
XGBoost 1562.5684 0.9985 1.6773 73.903

Table A.2: Performance of ML models on Setting1 and Window2

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1708.418 1.0286 1.78212 59.3874
SVR with RBF kernel 1433.0753 0.9148 1.4114 34.7324

Random forest regressor 1824.0299 0.9937 1.6242 48.7033
KNN regressor 1784.3240 1.0047 1.7131 61.1671

Gradient Boosting Machine 1562.5684 0.9985 1.6773 73.903
XGBoost 1562.5684 0.9985 1.6773 73.903

Table A.3: Performance of ML models on Setting1 and Window3
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Models RMSE RMSLE MAPE PB
SVR with linear kernel 1646.490 0.9531 1.5432 42.5179
SVR with RBF kernel 1397.1943 0.8489 1.2270 22.8572

Random forest regressor 1753.1814 0.9154 1.3921 36.9052
KNN regressor 1742.0361 0.9336 1.4916 46.9100

Gradient Boosting Machine 1562.5684 0.9985 1.6773 73.903
XGBoost 1562.5684 0.9985 1.6773 73.903

Table A.4: Performance of ML models on Setting1 and Window4

A.2 Results of Setting 2 Dataset

Models RMSE RMSLE MAPE PB
SVR with linear kernel 2073.461 0.6510 0.6541 -17.108
SVR with RBF kernel 2131.8123 0.6444 0.5503 -29.9984

Random forest regressor 1789.772 0.6353 0.6762 -1.0238
KNN regressor 2093.4504 0.6542 0.6063 -19.6836

Gradient Boosting Machine 1562.5684 0.9985 1.6773 73.903
XGBoost 1562.5684 0.9985 1.6773 73.903

Table A.5: Performance of ML models on Setting2 and Window1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 2172.874 0.6807 0.7023 -21.048
SVR with RBF kernel 2321.677 0.7029 0.6185 -33.7399

Random forest regressor 2089.787 0.7053 0.6834 -19.99
KNN regressor 2285.698 0.708 0.639 -29.436

Gradient Boosting Machine 2149.712 0.716 0.698 -19.82
XGBoost 2178.504 0.729 0.710 -20.215

Table A.6: Performance of ML models on Setting2 and Window2
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Models RMSE RMSLE MAPE PB
SVR with linear kernel 2061.104 0.6371 0.625 -22.1240
SVR with RBF kernel 2246.103 0.6794 0.5792 -33.3903

Random forest regressor 2250.601 0.735 0.681 -24.184
KNN regressor 2280.120 0.710 0.606 -30.216

Gradient Boosting Machine 2268.797 0.736 0.682 -25.077
XGBoost 2272.418 0.742 0.688 -24.213

Table A.7: Performance of ML models on Setting2 and Window3

Models RMSE RMSLE MAPE PB
SVR with linear kernel 2037.274 0.6158 0.5731 -23.543
SVR with RBF kernel 2200.4396 0.6588 0.5428 -33.2532

Random forest regressor 2236.737 0.713 0.630 -25.605
KNN regressor 2276.245 0.712 0.584 -29.636

Gradient Boosting Machine 2242.602 0.714 0.619 -27.306
XGBoost 2244.821 0.719 0.627 -26.737

Table A.8: Performance of ML models on Setting2 and Window4

A.3 Results of Setting 3 dataset

Models RMSE RMSLE MAPE PB
SVR with linear kernel 2040.004 0.6691 0.5815 -31.1512
SVR with RBF kernel 2022.704 0.6137 0.5472 -25.9081

Random forest regressor 2137.607 0.647 0.515 -26.118
KNN regressor 2031.657 0.621 0.543 -23.787

Gradient Boosting Machine 2221.759 0.681 0.558 -23.129
XGBoost 2203.462 0.683 0.560 -23.857

Table A.9: Performance of ML models on Setting 3 and Window 1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1831.9619 0.71350 0.6804 -23.3767
SVR with RBF kernel 1772.821 0.6295 0.6272 -16.7380

Random forest regressor 1845.840 0.661 0.633 -15.148
KNN regressor 1807.304 0.653 0.665 -13.577

Gradient Boosting Machine 1913.934 0.692 0.696 -8.779
XGBoost 1898.775 0.677 0.657 -11.641

Table A.10: Performance of ML models on Setting 3 and Window 2
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Models RMSE RMSLE MAPE PB
SVR with linear kernel 1684.5796 0.70579 0.7080 -16.4619
SVR with RBF kernel 1620.1294 0.6343 0.6701 -9.2713

Random forest regressor 1799.419 0.709 0.798 0.285
KNN regressor 1672.823 0.663 0.722 -3.659

Gradient Boosting Machine 1843.053 0.726 0.830 3.802
XGBoost 1820.738 0.716 0.816 2.582

Table A.11: Performance of ML models on Setting 3 and Window 3

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1613.001 0.7099 0.7384 -12.8658
SVR with RBF kernel 1551.1507 0.6471 0.7045 -6.6269

Random forest regressor 1828.878 0.746 0.864 0.117
KNN regressor 1644.635 0.683 0.763 -2.072

Gradient Boosting Machine 1778.022 0.742 0.865 4.318
XGBoost 1802.980 0.746 0.870 3.700

Table A.12: Performance of ML models on Setting3 and Window4

A.4 Results of Setting 4 dataset

Models RMSE RMSLE MAPE PB
SVR with linear kernel 3548.5262 0.9365 0.9536 -45.5601
SVR with RBF kernel 3195.6427 0.8299 0.8768 -40.1138

Random forest regressor 2748.581 0.690 0.677 -28.815
KNN regressor 2777.307 0.772 0.857 -30.263

Gradient Boosting Machine 2642.056 0.645 0.610 -27.979
XGBoost 2678.717 0.669 0.645 -28.755

Table A.13: Performance of ML models on Setting 4 and Window 1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 3281.4268 0.8718 0.8326 -43.984
SVR with RBF kernel 2995.1563 0.7810 0.7698 -39.493

Random forest regressor 2351.834 0.629 0.571 -24.201
KNN regressor 2558.415 0.710 0.731 -28.209

Gradient Boosting Machine 2367.993 0.638 0.561 -25.978
XGBoost 2359.404 0.784 0.540 -26.302

Table A.14: Performance of ML models on Setting 4 and Window 2
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Models RMSE RMSLE MAPE PB
SVR with linear kernel 3254.8118 0.8611 0.8031 -42.6700
SVR with RBF kernel 2998.7690 0.7816 0.7597 -38.5656

Random forest regressor 2284.228 0.623 0.596 -23.411
KNN regressor 2588.837 0.705 0.719 -26.375

Gradient Boosting Machine 2337.541 0.640 0.619 -23.784
XGBoost 2354.264 0.632 0.578 -25.919

Table A.15: Performance of ML models on Setting 4 and Window 3

Models RMSE RMSLE MAPE PB
SVR with linear kernel 3135.115 0.8301 0.7539 -40.9715
SVR with RBF kernel 2912.004 0.7567 0.7056 -38.1760

Random forest regressor 2229.348 0.609 0.565 -24.685
KNN regressor 2525.720 0.683 0.671 -26.204

Gradient Boosting Machine 2311.208 0.641 0.612 -24.242
XGBoost 2300.017 0.641 0.624 -23.929

Table A.16: Performance of ML models on Setting 4 and Window 4
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CHAPTER B

Experiment 2: Performance metrics tables

B.1 Results of Setting 1 Dataset

Models RMSE RMSLE MAPE PB
KNN regressor 1569.860 1.080 1.956 82.752

XGBoost 1465.613 0.957 1.569 63.079
KNN regressor (with gradient features) 1616.096 1.122 2.092 83.868

XGBoost (with gradient features) 1440.941 0.920 1.456 56.039

Table B.1: Performance of ML models on Setting1 and Window1

Models RMSE RMSLE MAPE PB
KNN regressor 1765.723 1.089 1.992 72.143

XGBoost 1685.308 1.013 1.664 47.270
KNN regressor (with gradient features) 1818.978 1.123 2.120 77.991

XGBoost (with gradient features) 1654.398 1.001 1.626 44.345

Table B.2: Performance of ML models on Setting1 and Window2

Models RMSE RMSLE MAPE PB
KNN regressor 1732.477 0.992 1.678 56.892

XGBoost 1655.804 0.927 1.407 34.692
KNN regressor (with gradient features) 1772.231 1.026 1.788 63.033

XGBoost (with gradient features) 1620.467 0.919 1.402 35.434

Table B.3: Performance of ML models on Setting1 and Window3

B.2 Results of Setting 2 Dataset
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Models RMSE RMSLE MAPE PB
KNN regressor 1670.266 0.923 1.463 43.302

XGBoost 1565.454 0.859 1.206 21.459
KNN regressor (with gradient features) 1684.242 0.941 1.512 44.821

XGBoost (with gradient features) 1581.797 0.856 1.201 21.196

Table B.4: Performance of ML models on Setting1 and Window4

Models RMSE RMSLE MAPE PB
KNN regressor 1930.453 0.607 0.581 -16.222

XGBoost 1730.685 0.599 0.612 -8.511
KNN regressor (with gradient features) 1950.659 0.618 0.619 -15.036

XGBoost (with gradient features) 1785.854 0.600 0.622 -10.184

Table B.5: Performance of ML models on Setting2 and Window1

Models RMSE RMSLE MAPE PB
KNN regressor 2162.946 0.676 0.633 -24.519

XGBoost 2059.587 0.688 0.673 -20.709
KNN regressor (with gradient features) 2048.277 0.643 0.645 -20.498

XGBoost (with gradient features) 2073.945 0.687 0.690 -20.704

Table B.6: Performance of ML models on Setting2 and Window2

Models RMSE RMSLE MAPE PB
KNN regressor 2110.825 0.655 0.589 -24.135

XGBoost 2154.978 0.707 0.672 -22.732
KNN regressor (with gradient features) 2047.914 0.629 0.578 -23.117

XGBoost (with gradient features) 2191.391 0.7125 0.6460 -27.039

Table B.7: Performance of ML models on Setting2 and Window3

Models RMSE RMSLE MAPE PB
KNN regressor 2080.455 0.639 0.558 -23.261

XGBoost 2052.696 0.664 0.590 -23.569
KNN regressor (with gradient features) 1969.966 0.610 0.575 -18.208

XGBoost (with gradient features) 2042.590 0.650 0.601 -21.944

Table B.8: Performance of ML models on Setting2 and Window4
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B.3 Results of Setting 3 dataset

Models RMSE RMSLE MAPE PB
KNN regressor 1949.270 0.612 0.568 -21.249

XGBoost 1761.409 0.564 0.513 -16.392
KNN regressor (with gradient features) 1949.604 0.617 0.579 -21.080

XGBoost (with gradient features) 1767.043 0.565 0.515 -18.023

Table B.9: Performance of ML models on Setting 3 and Window 1

Models RMSE RMSLE MAPE PB
KNN regressor 1752.394 0.647 0.680 -11.128

XGBoost 1648.556 0.628 0.660 -8.168
KNN regressor (with gradient features) 1676.477 0.651 0.713 -8.652

XGBoost (with gradient features) 1611.761 0.620 0.657 -8.235

Table B.10: Performance of ML models on Setting 3 and Window 2

Models RMSE RMSLE MAPE PB
KNN regressor 1637.057 0.659 0.734 -2.878

XGBoost 1539.941 0.647 0.728 1.019
KNN regressor (with gradient features) 1625.123 0.658 0.725 -6.092

XGBoost (with gradient features) 1517.524 0.651 0.744 2.737

Table B.11: Performance of ML models on Setting 3 and Window 3

Models RMSE RMSLE MAPE PB
KNN regressor 1619.538 0.683 0.786 -0.303

XGBoost 1532.417 0.686 0.790 3.035
KNN regressor (with gradient features) 1629.991 0.698 0.826 1.149

XGBoost (with gradient features) 1516.264 0.677 0.780 2.901

Table B.12: Performance of ML models on Setting3 and Window4

B.4 Results of Setting 4 dataset
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Models RMSE RMSLE MAPE PB
KNN regressor 2608.249 0.715 0.774 -29.806

XGBoost 2510.788 0.646 0.655 -28.000
KNN regressor (with gradient features) 2681.130 0.737 0.828 -29.350

XGBoost (with gradient features) 2448.747 0.626 0.640 -27.143

Table B.13: Performance of ML models on Setting 4 and Window 1

Models RMSE RMSLE MAPE PB
KNN regressor 2412.385 0.662 0.667 -27.503

XGBoost 2273.783 0.676 0.577 -26.407
KNN regressor (with gradient features) 2513.046 0.705 0.751 -27.211

XGBoost (with gradient features) 2229.114 0.613 0.576 -25.147

Table B.14: Performance of ML models on Setting 4 and Window 2

Models RMSE RMSLE MAPE PB
KNN regressor 2438.237 0.658 0.655 -25.716

XGBoost 2289.689 0.621 0.608 -24.213
KNN regressor (with gradient features) 2606.892 0.699 0.707 -29.296

XGBoost (with gradient features) 2313.418 0.612 0.584 -25.592

Table B.15: Performance of ML models on Setting 4 and Window 3

Models RMSE RMSLE MAPE PB
KNN regressor 2379.275 0.638 0.617 -25.378

XGBoost 2224.220 0.599 0.569 -24.296
KNN regressor (with gradient features) 2618.930 0.700 0.698 -29.732

XGBoost (with gradient features) 2275.854 0.612 0.577 -25.635

Table B.16: Performance of ML models on Setting 4 and Window 4
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CHAPTER C

Experiment 3: Performance metrics tables

Models RMSE RMSLE MAPE PB
KNN regressor 1121.797 1.083 2.705 -73.089

XGBoost 1218.154 1.275 2.246 -68.946

Table C.1: Performance of KNN and XGBoost models on Setting 1 and Window 4
of reconstructed radon data
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CHAPTER D

Experiment 4: Performance metrics tables

D.1 Results of Setting 1 Dataset

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1675.153 ± 4.106 1.041 ± 0.002 1.794 ± 0.007 43.747 ± 0.487
SVR with RBF kernel 1266.694 ± 12.871 0.748 ± 0.007 0.996 ± 0.015 14.965 ± 0.881

Random forest regressor 1504.743 ± 17.203 0.833 ± 0.010 1.200 ± 0.026 29.918 ± 1.010
KNN regressor 1453.810 ± 13.572 0.886 ± 0.007 1.348 ± 0.018 38.616 ± 0.689

XGBoost 1425.636 ± 34.579 0.775 ± 0.019 1.057 ± 0.040 25.946 ± 1.547

Table D.1: Performance of ML models on Setting1 and Window1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1685.032 ± 4.592 1.021 ± 0.002 1.747 ± 0.007 47.405 ±0.420
SVR with RBF kernel 1260.341 ± 9.237 0.758 ± 0.006 1.007 ± 0.014 15.823 ± 0.821

Random forest regressor 1440.571 ± 16.687 0.757 ± 0.007 0.988 ± 0.015 18.627 ± 0.719
KNN regressor 1555.096 ± 9.474 0.913 ± 0.004 1.418 ± 0.011 44.399 ± 0.503

XGBoost 1447.739 ± 26.569 0.730 ± 0.014 0.900 ± 0.025 16.174 ± 1.243

Table D.2: Performance of ML models on Setting1 and Window2

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1591.935 ± 5.367 0.958 ± 0.002 1.559 ± 0.007 42.722 ± 0.494
SVR with RBF kernel 1276.489 ± 10.431 0.764 ± 0.006 1.018 ± 0.015 17.281 ± 0.660

Random forest regressor 1410.108 ± 14.336 0.736 ± 0.008 0.948 ± 0.018 19.168 ± 0.887
KNN regressor 1503.911 ± 9.480 0.887 ± 0.005 1.357 ± 0.013 44.474 ± 0.544

XGBoost 1401.926 ± 25.832 0.729 ± 0.020 0.923 ± 0.043 19.879 ± 1.676

Table D.3: Performance of ML models on Setting1 and Window3

D.2 Results of Setting 2 Dataset
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Models RMSE RMSLE MAPE PB
SVR with linear kernel 1523.800 ± 4.899 0.907 ± 0.002 1.411 ± 0.006 37.351 ± 0.449
SVR with RBF kernel 1275.861 ± 7.009 0.769 ± 0.004 1.014 ± 0.009 13.903 ± 0.620

Random forest regressor 1385.973 ± 12.021 0.743 ± 0.009 0.941 ± 0.020 11.238 ± 0.875
KNN regressor 1486.361 ± 8.207 0.864 ± 0.004 1.290 ± 0.010 40.166 ± 0.521

XGBoost 1558.656 ± 50.066 0.858 ± 0.023 1.216 ± 0.065 19.099 ± 2.088

Table D.4: Performance of ML models on Setting1 and Window4

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1817.051 ± 7.155 0.576 ± 0.002 0.450 ± 0.001 −37.482 ± 0.215
SVR with RBF kernel 1769.745 ± 24.322 0.524 ± 0.007 0.424 ± 0.004 −24.869 ± 0.753

Random forest regressor 1224.620 ± 12.099 0.412 ± 0.004 0.359 ± 0.004 −3.774 ± 0.783
KNN regressor 1655.044 ± 13.438 0.483 ± 0.004 0.388 ± 0.004 −25.171 ± 0.351

XGBoost 1245.129 ± 20.986 0.409 ± 0.006 0.353 ± 0.007 −6.459 ± 1.123

Table D.5: Performance of ML models on Setting2 and Window1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1806.712 ± 5.672 0.584 ± 0.002 0.430 ± 0.001 −38.980 ± 0.134
SVR with RBF kernel 1803.951 ± 15.598 0.517 ± 0.005 0.391 ± 0.004 −28.999 ± 0.483

Random forest regressor 1263.030 ± 17.053 0.406 ± 0.007 0.324 ± 0.004 −17.532 ± 0.687
KNN regressor 1691.291 ± 12.912 0.477 ± 0.004 0.360 ± 0.003 −29.271 ± 0.356

XGBoost 1312.230 ± 24.688 0.412 ± 0.010 0.330 ± 0.006 −18.447 ± 1.011

Table D.6: Performance of ML models on Setting2 and Window2

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1733.833 ± 7.662 0.558 ± 0.003 0.411 ± 0.001 −37.684 ± 0.200
SVR with RBF kernel 1822.966 ± 16.930 0.552 ± 0.006 0.437 ± 0.005 −27.671 ± 0.529

Random forest regressor 1432.741 ± 26.043 0.456 ± 0.007 0.374 ± 0.006 −20.629 ± 0.730
KNN regressor 1686.968 ± 9.767 0.494 ± 0.003 0.380 ± 0.002 −29.491 ± 0.312

XGBoost 1449.707 ± 34.108 0.472 ± 0.011 0.393 ± 0.009 −21.616 ± 1.160

Table D.7: Performance of ML models on Setting2 and Window3

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1754.626 ± 5.556 0.559 ± 0.002 0.407 ± 0.001 −37.188 ± 0.170
SVR with RBF kernel 1960.545 ± 11.275 0.601 ± 0.004 0.429 ± 0.003 −32.667 ± 0.478

Random forest regressor 1624.719 ± 22.304 0.520 ± 0.008 0.388 ± 0.004 −30.031 ± 0.782
KNN regressor 1791.879 ± 9.166 0.530 ± 0.003 0.388 ± 0.003 −31.665 ± 0.310

XGBoost 1623.635 ± 26.630 0.536 ± 0.012 0.390 ± 0.008 −30.180 ± 1.098

Table D.8: Performance of ML models on Setting2 and Window4
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D.3 Results of Setting 3 dataset

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1163.396 ± 2.436 0.422 ± 0.001 0.309 ± 0.001 −22.173 ± 0.138
SVR with RBF kernel 1049.105 ± 12.598 0.402 ± 0.005 0.315 ± 0.004 −9.251 ± 0.598

Random forest regressor 1095.825 ± 14.553 0.397 ± 0.004 0.299 ± 0.003 −8.918 ± 0.661
KNN regressor 1067.870 ± 5.950 0.387 ± 0.003 0.287 ± 0.003 −13.865 ± 0.312

XGBoost 1157.040 ± 16.396 0.445 ± 0.009 0.329 ± 0.006 −11.857 ± 0.914

Table D.9: Performance of ML models on Setting 3 and Window 1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1003.835 ± 1.443 0.425 ± 0.000 0.338 ± 0.001 −14.102 ± 0.162
SVR with RBF kernel 976.498 ± 7.378 0.423 ± 0.003 0.378 ± 0.003 2.639 ± 0.476

Random forest regressor 1010.883 ± 11.862 0.409 ± 0.003 0.365 ± 0.004 3.966 ± 0.784
KNN regressor 958.384 ± 5.257 0.405 ± 0.002 0.351 ± 0.003 −1.904 ± 0.315

XGBoost 1034.254 ± 16.228 0.434 ± 0.007 0.376 ± 0.006 0.405 ± 0.877

Table D.10: Performance of ML models on Setting 3 and Window 2

Models RMSE RMSLE MAPE PB
SVR with linear kernel 964.549 ± 1.462 0.420 ± 0.000 0.339 ± 0.001 −13.539 ± 0.157
SVR with RBF kernel 903.212 ± 5.921 0.398 ± 0.002 0.360 ± 0.002 4.700 ± 0.417

Random forest regressor 958.488 ± 11.598 0.398 ± 0.003 0.355 ± 0.004 4.402 ± 0.597
KNN regressor 911.911 ± 4.321 0.392 ± 0.001 0.347 ± 0.002 1.554 ± 0.291

XGBoost 960.675 ± 15.065 0.415 ± 0.005 0.362 ± 0.006 1.826 ± 0.861

Table D.11: Performance of ML models on Setting 3 and Window 3

Models RMSE RMSLE MAPE PB
SVR with linear kernel 1167.565 ± 2.313 0.449 ± 0.001 0.358 ± 0.001 −18.090 ± 0.187
SVR with RBF kernel 988.932 ± 6.302 0.395 ± 0.002 0.350 ± 0.003 −1.432 ± 0.486

Random forest regressor 1030.605 ± 11.240 0.398 ± 0.003 0.340 ± 0.003 −2.611 ± 0.443
KNN regressor 1004.551 ± 4.659 0.396 ± 0.001 0.344 ± 0.002 −3.082 ± 0.269

XGBoost 1077.445 ± 14.536 0.427 ± 0.006 0.356 ± 0.005 −4.495 ± 0.758

Table D.12: Performance of ML models on Setting3 and Window4

D.4 Results of Setting 4 dataset
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Models RMSE RMSLE MAPE PB
SVR with linear kernel 799.430 ± 2.866 0.366 ± 0.001 0.325 ± 0.002 −7.836 ± 0.290
SVR with RBF kernel 883.409 ± 16.093 0.355 ± 0.005 0.275 ± 0.004 −14.205 ± 0.669

Random forest regressor 820.725 ± 11.004 0.340 ± 0.004 0.268 ± 0.003 −14.503 ± 0.593
KNN regressor 821.089 ± 7.673 0.350 ± 0.003 0.301 ± 0.004 −6.256 ± 0.425

XGBoost 813.663 ± 17.767 0.350 ± 0.007 0.278 ± 0.005 −11.141 ± 0.885

Table D.13: Performance of ML models on Setting 4 and Window 1

Models RMSE RMSLE MAPE PB
SVR with linear kernel 843.725 ± 2.459 0.361 ± 0.001 0.306 ± 0.001 −10.058 ± 0.253
SVR with RBF kernel 924.168 ± 12.107 0.370 ± 0.005 0.296 ± 0.004 −11.331 ± 0.588

Random forest regressor 882.463 ± 10.462 0.355 ± 0.004 0.284 ± 0.003 −12.750 ± 0.668
KNN regressor 848.230 ± 7.604 0.348 ± 0.003 0.297 ± 0.003 −6.377 ± 0.389

XGBoost 856.988 ± 16.883 0.355 ± 0.006 0.286 ± 0.006 −8.983 ± 0.788

Table D.14: Performance of ML models on Setting 4 and Window 2

Models RMSE RMSLE MAPE PB
SVR with linear kernel 871.275 ± 1.807 0.370 ± 0.001 0.317 ± 0.001 −8.293 ± 0.260
SVR with RBF kernel 877.931 ± 10.470 0.365 ± 0.004 0.302 ± 0.003 −7.384 ± 0.527

Random forest regressor 880.119 ± 8.523 0.362 ± 0.003 0.306 ± 0.003 −5.311 ± 0.657
KNN regressor 848.903 ± 6.439 0.363 ± 0.002 0.304 ± 0.003 −2.879 ± 0.331

XGBoost 889.043 ± 18.206 0.365 ± 0.005 0.313 ± 0.006 −1.502 ± 1.097

Table D.15: Performance of ML models on Setting 4 and Window 3

Models RMSE RMSLE MAPE PB
SVR with linear kernel 832.009 ± 1.445 0.365 ± 0.000 0.318 ± 0.001 −5.691 ± 0.291
SVR with RBF kernel 849.146 ± 6.916 0.363 ± 0.003 0.310 ± 0.004 −3.967 ± 0.656

Random forest regressor 998.946 ± 24.774 0.391 ± 0.005 0.363 ± 0.006 10.250 ± 0.942
KNN regressor 881.389 ± 5.870 0.376 ± 0.002 0.330 ± 0.002 1.736 ± 0.349

XGBoost 1031.347 ± 35.306 0.395 ± 0.007 0.370 ± 0.010 12.709 ± 1.690

Table D.16: Performance of ML models on Setting 4 and Window 4
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