
Evaluation of Eventual Consistency and
Linearizability in MongoDB

by

Vora Harshal Rajeshbhai
202111017

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

May, 2023

Acknowledgments

I want to thank the people who have helped me during my research. Their sup-
port and guidance have been very important to me. I am incredibly grateful to
my supervisor, Prof. P M Jat. He has always been there for me, providing support
and valuable advice. Their expertise and guidance have shaped my research in a
significant way.

I am also grateful to the faculty members of DA-IICT for their exceptional teach-
ing, which laid the foundation for my knowledge and skills. Also, I want to ex-
press my deep gratitude to my family and friends. Their unwavering love, under-
standing, and encouragement have been my constant motivation and inspiration.

I would also like to thank my fellow researcher Mr. Kavan Hajare. He has been
a great companion on this journey, engaging in exciting discussions and working
together. I am grateful to the participants of my thesis. Their willingness to share
their time and insights has been crucial to the progress of my research.

In conclusion, I am thankful to everyone mentioned above, as well as anyone else
who has supported me along the way. Your contributions have been invaluable,
and I am sincerely grateful for your presence in my academic and personal life.

ii

Contents

Abstract v

List of Figures vi

1 Introduction 1
1.1 What is Consistency and Consistency in MongoDB 1
1.2 Motivation . 2
1.3 Problem Statement . 3
1.4 Our Contribution . 3
1.5 Outline . 3

2 Background 4
2.1 Eventual Consistency . 4
2.2 Linearizability in MongoDB . 5
2.3 Consistency Settings in MongoDB 6

2.3.1 writeConcern . 7
2.3.2 readConcern . 8
2.3.3 Consideration and Tradeoffs 9

3 Literature Survey 10
3.1 Checking Causal Consistency of MongoDB 10
3.2 Tunable Consistency in MongoDB 11
3.3 Data Consistency Properties of Document Store as a Service (DSaaS) 11
3.4 Summary of Literature Survey . 13

4 Experimentation and Results 14
4.1 Experimentation Setup . 14
4.2 Experimentation Details . 14

4.2.1 Architectural overview . 14
4.2.2 Performance Metrics . 15
4.2.3 Varied Parameters . 16

iii

4.3 Results . 18
4.3.1 Anomaly in Write latency . 18
4.3.2 Operation-Level Consistency Setting 19
4.3.3 Session-level Consistency Setting 25
4.3.4 Multiple Reader and Writer Setting 29

5 Conclusion and Future work 35
5.1 Conclusion . 35
5.2 Future work . 36

References 37

iv

Abstract

Sharding and replication are crucial techniques for scaling distributed systems,
enabling data distribution across multiple nodes. However, as the number of
replicas increases, maintaining consistency across them becomes increasingly chal-
lenging. Developers require understanding the consistency guarantees offered by
different distributed systems to make informed decisions about the trade-offs be-
tween consistency and low latency. The study of consistency is essential to main-
tain data integrity and optimize performance and scaling.

In this work, we focus on evaluating the eventual consistency and lineariz-
ability provided by MongoDB, a popular distributed database system. The exper-
iment considers various combinations of read and write concern levels and how
they affect the consistency of the system. We also take into account different sizes
of the document as a parameter in measuring the consistency. By analyzing these
factors, we aim to quantify the impact of different parameters on the system’s
consistency.

We evaluate the performance of MongoDB by measuring the read and write
latency of the operations by varying the read and write concern levels as well as
by varying the document size. The evaluation of linearizability is based on mea-
suring the occurrence of stale reads, that happen when a read operation accesses
outdated or inconsistent data. By analyzing these variables, the aim is to provide
a more comprehensive understanding of MongoDB’s eventual consistency and
linearizability and how it behaves in different scenarios.

Our findings reveal that using "linearizable" readConcern has a significant
impact on the read latency and hence should only be used in scenarios where
strong consistency guarantee is absolutely essential. Furthermore, document size
has a significant impact on write latency and consistency but not on the read la-
tency. Using "majority" readConcern and writeConcern provides a good balance
between consistency and latency in MongoDB.

v

List of Figures

2.1 Linearizability for 3-node Replica Set 5
2.2 Parameter Options for writeConcern 7
2.3 Parameter Options for readConcern 8

4.1 Architecture Diagram of Setup . 15
4.2 Write Latency with different writeConcern and readConcern settings 18
4.3 Comparison of Avg. Write Latencies for writeConcern: local 20
4.4 Comparison of Avg. Write Latencies for writeConcern: majority . . 20
4.5 Comparison of Avg. Read Latencies for readConcern: local 21
4.6 Comparison of Avg. Read Latencies for readConcern: majority . . . 22
4.7 Comparison of Avg. Read Latencies for readConcern: linearizable . 22
4.8 Comparison of Percentage Stale Reads for writeConcern: local . . . 24
4.9 Comparison of Percentage Stale Reads for writeConcern: majority . 24
4.10 Comparison of Avg. Write Latency for writeConcern: local 25
4.11 Comparison of Avg. Write Latency for writeConcern: majority . . . 26
4.12 Comparison of Avg. Read Latencies for readConcern: local 26
4.13 Comparison of Avg. Read Latencies for readConcern: majority . . . 27
4.14 Comparison of Avg. Read Latencies for readConcern: linearizable . 27
4.15 Comparison of Percentage Stale Reads for writeConcern: local . . . 28
4.16 Comparison of Percentage Stale Reads for writeConcern: majority . 29
4.17 Comparison of Avg. Write Latency for writeConcern: local 30
4.18 Comparison of Avg. Write Latency for writeConcern: majority . . . 30
4.19 Comparison of Avg. Read Latencies for readConcern: local 31
4.20 Comparison of Avg. Read Latencies for readConcern: majority . . . 32
4.21 Comparison of Avg. Read Latencies for readConcern: linearizable . 32
4.22 Comparison of Percentage Stale Reads for writeConcern: local . . . 33
4.23 Comparison of Percentage Stale Reads for writeConcern: majority . 34

vi

CHAPTER 1

Introduction

1.1 What is Consistency and Consistency in MongoDB

In NoSQL systems, maintaining consistency is crucial to ensure data correctness
across distributed replicas. There are various consistency levels available in dis-
tributed databases. A consistency level is essentially a contract between processes
and data store. It says that if processes agree to obey certain rules, the store
promises to work correctly[7]. Distributed databases focus primarily on the fol-
lowing three consistency levels:-

1. Strong Consistency:- One of the consistency levels is Strong Consistency,
which guarantees immediate and synchronized data updates. With strong
consistency, when a write operation occurs, all subsequent read operations
will only return the latest updated data. This level of consistency ensures
that all replicas have the most up-to-date information, preserving data in-
tegrity and accuracy. Strong consistency is suitable for applications that pri-
oritize consistency over availability.

2. Causal Consistency:- Causal Consistency guarantees that if one operation
causally depends on another operation, the dependent operation will ap-
pear to have been executed after the causally preceding operation. In other
words, suppose a client performs two operations, A and B, where B depends
causally on A. Now, any subsequent read operation will see the effects of A
before B.

3. Eventual Consistency:- Eventual consistency allows for temporary inconsis-
tencies that eventually converge to a consistent state. In this consistency
level, after a write operation is complete, the updates may propagate grad-
ually to all replicas. This results in a period where different replicas might
have different versions of the data. However, these inconsistencies are re-
solved over time, and all replicas eventually reach the same state. Eventual

1

consistency provides higher availability and improved performance than
strong consistency, making it suitable for applications that can tolerate tem-
porary inconsistencies and prioritize availability and scalability.

MongoDB is a popular open-source document-oriented NoSQL database sys-
tem. MongoDB provides high scalability, performance, and flexibility [1]. Mon-
goDB supports the above three consistency levels, and it allows for fine-tuning of
consistency levels during read and write operations ranging from strong consis-
tency to eventual consistency with the help of readConcern and writeConcern set-
tings. readConcern and writeConcern in MongoDB can be explained as follows:-

• readConcern:- It allows you to control the consistency and isolation proper-
ties of the data read from the replica set [1].

• writeConcern:- It allows you to set the level of acknowledgement that is
desired for a write operation [1].

1.2 Motivation

Analysis of Consistency offered by various distributed systems is an important
task as it helps the developers to understand whether it is worth sacrificing con-
sistency for low latency.

Performance and scalability are critical considerations in distributed systems.
Consistency levels directly impact these factors. Strong consistency level often
introduces a significant overhead and may limit scalability, while eventual con-
sistency level offers greater scalability at the cost of temporary inconsistencies. By
exploring the different consistency models offered by distributed systems, devel-
opers can determine the appropriate level of consistency needed to maintain data
integrity and correctness.

Analyzing consistency in distributed databases is vital for maintaining data
integrity, optimizing system performance, and understanding the behaviour of
the system under varying conditions. By thoroughly examining these factors, de-
velopers can make well-informed decisions regarding the choice of a distributed
system and consistency model that best aligns with the needs of their application.

2

1.3 Problem Statement

We focus on experiments to test the consistency of MongoDB under various con-
sistency settings. The objective of the experiment is to measure the read latency,
write latency and the number of stale reads during concurrent read and write
operations. We attempt finding the answer to the following questions:-

• How do various factors such as readConcern, writeConcern and document
size affect the consistency of the database during concurrent read and write
operations?

• Does MongoDB provide the linearizability that it guarantees? And if it does,
then at what cost?

1.4 Our Contribution

We conduct experiments to analyze the consistency of the MongoDB database
under various conditions, that are operation-level consistency,session-level con-
sistency and consistency in the presence of multiple readers and writers.

1. Understanding the impact of readConcern and writeConcern: Through our
experiment, we observe how different factors such as readConcern and writeCon-
cern affect the consistency and performance of the database.

2. Understanding the impact of Document size: We also observe the effect
that various document sizes have on the consistency and performance of
the database.

3. Evaluation of Linearizability in MongoDB: One of the important contribu-
tions of our research is the evaluation of Linearizability. We examined to
which extent MongoDB achieves Linearizability and what are the associated
costs or trade-offs.

1.5 Outline

Chapter 2 discusses Eventual Consistency, Linearizability in MongoDB, and Con-
sistency support in MongoDB. Chapter 3 discusses Related Works, and Chapter 4
discusses the Experiment setup, details and Results.

3

CHAPTER 2

Background

2.1 Eventual Consistency

In distributed databases like MongoDB, eventual consistency is a core principle
that prioritizes availability and scalability in large-scale systems. Traditional re-
lational databases emphasize strong consistency while eventual consistency ac-
knowledges the challenges of distributed systems and relaxes the immediate con-
sistency requirements.

CAP theorem [2] states that out of the three i.e. Consistency, Availability and
Partition, only two can be guaranteed at a particular moment in time. In a dis-
tributed database, we already have partitions, and hence we have to make sacri-
fice on either consistency or availability [3]. In an eventually consistent system,
replicas or nodes may temporarily hold inconsistent versions of data. This can oc-
cur due to delays in propagating updates across the network, which can be caused
by factors like network partitions, latency, and concurrent updates happening si-
multaneously on different nodes. As a result, clients accessing different replicas
may observe different values or stale values of the data.

However, the key aspect of eventual consistency is that given enough time
and the absence of further updates, all replicas will eventually converge to a con-
sistent state [8]. This convergence is achieved through asynchronous replication
mechanisms that propagate updates across the system. Over time, the replicas
synchronize and resolve any conflicting changes, ensuring they all reach a consis-
tent state.

Eventual consistency allows distributed databases like MongoDB to provide
high availability and scalability by tolerating temporary inconsistencies that even-
tually get resolved. This flexibility enables systems to handle network partitions,
scale horizontally, and continue functioning even in the face of failures.

4

2.2 Linearizability in MongoDB

Linearizability is one of the highest achievable consistency standards in distributed
systems, which states that each individual operation should appear to take place
instantaneously or atomically. It should appear to take effect at some moment be-
tween its start time and complete time. To explain Linearizability in simple terms
while executing multiple concurrent read and write operations, once a write is
executed, all the later reads should provide us with the value of that write opera-
tion or the value of the most recently executed write operation. Similarly, once a
read operation has returned a particular value, all the subsequent read operations
should yield the same value or the value of a later write.

Figure 2.1: Linearizability for 3-node Replica Set

Here in Fig.2.1, we have a 3-node replica set which consists of one primary
node and two secondary nodes. It is important to note that all the write operations
in MongoDB go to the primary node, while the read operations can go to either
primary or secondary nodes. We can see in Fig.2.1. that at TimeStamp TS: 3, a
write operation occurs, which writes the value of x as W(x): 7 in the primary.
Now, at TimeStamp TS: 5 another write operation occurs which writes the value
of x as W(x): 10. Now, just after this write finishes a read operation is initiated in
the replica set which can either go to the primary or any of the two secondaries.
Linearizability states that irrespective of which member of the replica set returns
the value of x, it should be the latest written value of x which is 10.

In the context of MongoDB, linearizability ensures that reads and writes to a

5

specific document are seen in a strict sequential order, as if they happened one
after the other in a linear fashion. When linearizability is achieved, a read oper-
ation always returns the most recent version of the document that has been ac-
knowledged by a majority of the replica set members. This ensures that the read
operation reflects the effects of all previous writes acknowledged by a majority,
thereby providing strong consistency. Linearizability is the highest level of con-
sistency offered by MongoDB and is particularly useful for scenarios where strict
ordering and synchronization of reads and writes are critical, such as in financial
systems or applications with complex data dependencies. So, in MongoDB as the
write operations only go to the primary, the understanding of Linearizability can
be reduced to the read operations not reading stale values of the data.

2.3 Consistency Settings in MongoDB

The ability to fine-tune consistency is an important feature in distributed databases
like MongoDB, allowing developers to customize the level of consistency based
on specific application requirements. In MongoDB, tunable consistency offers a
flexible approach to balance consistency, availability, and performance trade-offs
in distributed systems. This section explores the concept of tunable consistency
in MongoDB and its significance in meeting varying application needs. The con-
sistency levels in MongoDB replica sets are exposed to clients via readConcern
and writeConcern levels, which are parameters of any read or write operation
respectively [6].

Strong Consistency: Strong consistency in MongoDB ensures that every read
operation from any replica or node in the distributed system returns the most
recent and up-to-date value. MongoDB achieves strong consistency through syn-
chronous replication, where write operations are not considered committed until
they are acknowledged by a majority of replicas.

Eventual Consistency: Eventual consistency in MongoDB, as discussed earlier,
relaxes immediate consistency guarantees in favour of availability and scalability.
Updates made to the database are asynchronously propagated across replicas,
and although temporary inconsistencies may occur, they eventually converge to
a consistent state.

In MongoDB, we can vary the level of consistency from Strong Consistency to
various levels of Eventual Consistency according to our needs with the help of
read and write concerns.

6

2.3.1 writeConcern

MongoDB offers read and write concerns as tunable parameters to customize the
consistency level. We can vary the consistency of operations from Strong consis-
tency to various levels of Eventual consistency with the help of read and write
concerns. writeConcern allows the developer to specify the consistency guaran-
tees for the write operation.

Figure 2.2: Parameter Options for writeConcern

As shown in Fig.2.2, we can specify the value of writeConcern from 0 to N
where N is the number of nodes in our replica set or as "majority". Here are the
different parameters of writeConcern: w. The w option specifies the number of
nodes that must acknowledge the write operation before it is considered success-
ful. It controls the level of acknowledgement and replication. The possible values
for w are:

• w: 0 - No acknowledgement is requested from the server.

• w: 1 - The write operation waits for acknowledgement from the primary
node (default value).

• w: <number> - The write operation waits for acknowledgement from the
specified number of nodes.

• w: "majority" - The write operation waits for acknowledgement from the
majority of nodes in the replica set or cluster.

A write operation executed with w: "majority" is enough to ensure the dura-
bility of the data in the replica set even in the event of failures.

7

2.3.2 readConcern

Similarly, readConcern allows developers to specify the consistency guarantees
for read operations. As shown in Fig.2.3, we can set to values of readConcern
as local, available, majority, snapshot or linearizable which can be explained as
follows:-

Figure 2.3: Parameter Options for readConcern

• r: "local" - It is the default read concern level.

• r: "available" - This level ensures that the read operation returns the most
recent data available on a replica set or a sharded cluster. However, there is
no guarantee of linearizability or consistency across multiple nodes.

• r: "majority" - This level provides strong consistency by ensuring that the
read operation returns data that has been acknowledged by a majority of
replica set members or shards. It guarantees that the data read is durable
and reflects a point of consistency across the system.

• r: "snapshot" - The snapshot option is used to perform a read operation with
snapshot isolation. It provides a consistent view of the data at a specific
point in time.

• r: "linearizable" - This level provides linearizability, which guarantees that a
read operation reflects the latest write operation on a global scale. It ensures

8

that reads never see stale or out-of-order data but may introduce additional
latency.

MongoDB version 4.0 was introduced with readConcern: "linearizable", which
helps achieve linearizability in MongoDB. By using the linearizable read concern,
MongoDB ensures that the read operation appears as if it occurs atomically and
instantaneously after all prior write operations have been completed.

It guarantees that the read operation returns the latest committed value, re-
gardless of concurrent writes or network delays. By adjusting the read and write
concerns, developers can fine-tune the consistency and performance balance ac-
cording to the specific needs of their application.

2.3.3 Consideration and Tradeoffs

When leveraging tunable consistency in MongoDB, it is crucial to consider the
trade-offs between consistency, availability, and performance. Using stronger
read and write concern values provides data integrity but can introduce higher
latencies and potential limitations in availability during network partitions or
replica failures. On the other hand, weaker read and write concern values offers
improved availability and scalability but may result in temporary data inconsis-
tencies.

9

CHAPTER 3

Literature Survey

3.1 Checking Causal Consistency of MongoDB

The objective of the paper [5] is to propose a methodology for evaluating causal
consistency, specifically in the context of MongoDB. The authors aim to address
the research gap in evaluating causal consistency in MongoDB and provide in-
sights into MongoDB’s behaviour concerning this crucial consistency property.
By developing a robust methodology, the authors seek to enable practitioners and
researchers to assess and understand the causal consistency guarantees offered
by MongoDB, contributing to the field of distributed systems and database con-
sistency.

Their Experimental setup consisted of two shards, each of which is a replica
set of 5 nodes. For each experiment, there were 100 registers and 10 clients and
the generator generated read and write operations which were then appended
into a queue. The ratio between the read and write operations is 3:1. They varied
the total number of operations and the readConcern and writeConcern levels for
operations. They performed the experiment for both the scenarios with and with-
out nemesis, where nemesis is a tool used to simulate various network-related
failures and anomalies. They checked if MongoDB satisfies all three variants of
causal consistency(CC, CM and CCv).

Their results showed that in the presence of a nemesis, causal consistency
can only be guaranteed for reads with readConcern : "majority" and writes with
writeConcern : "majority".If the nemesis is not present, MongoDB can satisfy all
the three variants of causal consistency which are CC,CM and CCv even with
readConcern : "local" and writeConcern : "w1".

10

3.2 Tunable Consistency in MongoDB

The paper [6] aims to discuss and explore the concept of tunable consistency mod-
els in MongoDB’s replication system. It highlights the utility of these models for
application developers, explores the underlying mechanisms that enable tunable
consistency, presents case studies of real-world applications, characterizes the
performance trade-offs, compares MongoDB’s consistency offerings with other
databases, discusses implementation details, and includes performance evalua-
tions in the presence of failures. Overall, the paper provides a comprehensive
understanding of tunable consistency in MongoDB and its implications for dis-
tributed database systems.

The experimental setup involved three experiments comparing write latency
for different writeConcern values in MongoDB’s replication system. The experi-
ments were conducted on 3-node replica sets with varying geographical distribu-
tions of replica set members. The results showed the impact of writeConcern on
latency in local, Cross-Availability Zone, and Cross-Region scenarios. The experi-
ments were performed using MongoDB versions 4.0.2 and 4.0.3, with SSL enabled
or disabled, and deployment is done using MongoDB Atlas. The results provided
insights into the trade-off between durability guarantees and latency in different
deployment configurations.

The experiment showed the latency comparison for different geographical lo-
cations and it was found that the latency is lowest for local setup where the replica
set and the client were in the same AWS while it increased by 53% on average
for writeConcern : "local". And it increased by 44% for writeConcern : "major-
ity" when the replica set members were in different Availability Zones. Further-
more, the latency increased by 5746.4% for writeConcern : "w1" and it increased
by 6220.75% for writeConcern : "majority" as compared to local setup when the
replica set members were in different region.

3.3 Data Consistency Properties of Document Store as

a Service (DSaaS)

The paper [4] aimed to conduct an empirical study to quantify the inconsistency
observed in data held in MongoDB Atlas, a hosted offering of MongoDB as a
Service. The study focuses on understanding the level of data inconsistency in
MongoDB Atlas, considering its characteristics as a document store and the trade-
off between consistency and low latency/high availability during partitions. The

11

paper seeks to benchmark the consistency level of MongoDB Atlas, specifically by
measuring the probability that a read operation encounters stale values.

The MongoDB Atlas cluster is hosted on AWS in the Sydney region and they
used dedicated M10 clusters whose configurations were 2GB RAM, 10GB Storage
and 0.2vCPU. The application is run on EC2 instance of AWS.The chosen EC2
instance type is c4.2xlarge with Ubuntu Server 16.04 LTS (HVM) as the operating
system.The c4.2xlarge instance specifications include 32GB RAM, 8GB storage,
and 8 vCPUs.

The evaluation results showed that there were zero inconsistencies when read-
ing from the primary as it is expected but there were some inconsistencies when
the read happened from secondary copy and nearest copy. When the MongoDB
Atlas cluster and the evaluating application were in the same region, they ob-
served that there were inconsistencies when reading from nearest copy as com-
pared to primary copy and there is no significant difference in latency. So, they
concluded that the sacrifice of consistency did not make any sense if the applica-
tion and the cluster are in the same region.

12

3.4 Summary of Literature Survey

Name of paper Methodology Results

Checking
Causal Con-
sistency of
MongoDB

The paper[5] proposes a method-
ology to evaluate causal consis-
tency in MongoDB. By conduct-
ing experiments with two shards,
each consisting of a replica set of 5
nodes, they assess MongoDB’s be-
haviour concerning causal consis-
tency guarantees. The experiments
include 100 registers, 10 clients,
and a mix of read and write oper-
ations.

The results indicate that MongoDB
can achieve all three variants of
causal consistency (CC, CM, and
CCv) without any issues when
nemesis (a tool simulating network
failures) is absent. However, in
the presence of nemesis, MongoDB
can only guarantee causal con-
sistency for reads with readCon-
cern: "majority" and writes with
writeConcern: "majority."

Tunable Con-
sistency in
MongoDB

The paper[6] discusses the concept
of tunable consistency models in
MongoDB’s replication system. It
includes comparisons with other
databases, implementation details,
and performance evaluations in
the presence of failures. The ex-
periments involved three scenar-
ios comparing write latency for dif-
ferent writeConcern values in 3-
node replica sets with varying ge-
ographical distributions.

The results revealed the impact on
latency in local, Cross-Availability
Zone, and Cross-Region setups,
highlighting the trade-off between
durability guarantees and latency
in different configurations. The
latency was lowest for local setup
while it increased for Cross-
Availability zone setup and it was
highest for Cross-Region setup.

Data Consis-
tency Proper-
ties of Doc-
ument Store
as a Service
(DSaaS)

The paper[4] presents a study aim-
ing to quantify data inconsistency
in MongoDB Atlas. It focuses
on understanding the trade-off be-
tween consistency and low la-
tency/high availability during par-
titions. The study benchmarks the
consistency level by measuring the
probability of encountering stale
values during read operations.

The results revealed that when
reading from the primary replica,
there were no inconsistencies.
However, inconsistencies were
observed when reading from
secondary and nearest replicas.
Notably, when the application and
MongoDB Atlas cluster were in
the same region, inconsistencies
occurred.

13

CHAPTER 4

Experimentation and Results

In this section, we have mentioned the hardware specifications as well as the soft-
ware specifications of the systems used for experimentation. The experiment is
performed on a 3-node replica set in MongoDB.Also, we have discussed the re-
sults that were obtained from the experiment.

4.1 Experimentation Setup

Our setup consists of a 3-node replica set where each system is installed with Mon-
godb version 6.0.4 which is the latest at the time this experiment is performed.
The individual system has Intel(R) Core i5-6700 processor with 4 cores. All the
systems are installed with Ubuntu 16.04 as the operating system. Each system has
4GB of RAM with 500GB of storage space.The code for this experiment is written
in java . The version of the jar file used for connecting to MongoDB is 3.12.13. And
the code is executed in the Eclipse IDE with the version of Eclipse being 2023-03.

4.2 Experimentation Details

4.2.1 Architectural overview

As shown in Fig.4.1. There are three roles in our experiment - a writer, a reader,
and a MongoDB local server setup. The writer continuously writes the timestamp
into the database which is read by the reader simultaneously. The reader and
writer are kept in different processes. Stale Reads for our experiment are defined
as follows: The writer writes a document into the database which consists of some
value of X which contains the current timestamp in it. After the document is
written in the database the writer acknowledges the write. Now, when the reader
reads some value of some version of X from the database. If the version of X that

14

is read by the database is not the latest version of X in the database at that point
in time, then it is considered as a stale read.

Figure 4.1: Architecture Diagram of Setup

4.2.2 Performance Metrics

In this experiment we analyze the consistency provided by MongoDB by varying
the parameters discussed in section 4.2.3 . We have not changed the internal con-
figurations of MongoDB. It is how any user would experience it in real life. We
measure the following in our experiment:

1. Write Latency

2. Read Latency

3. Stale Reads

15

4.2.3 Varied Parameters

The parameters that are varied in the experiment are readConcern, writeConcern
and the document size. Also we have taken three consistency settings into account
which are operation-level consistency, session-level consistency, and consistency
in presence of multiple readers and writers respectively. The different writeCon-
cern values that we have used are:

1. Majority

2. Local

and the readConcern values that we have used are:

1. Linearizable

2. Majority

3. Local

We took every possible combination of these values and we have taken the av-
erage of 10 iterations of every configuration. We have also considered document
size as one of the parameters and the document sizes that we have considered are
1 KB, 50 KB, 100 KB, and 1 MB. There are 6 possible combinations of readCon-
cern and writeConcern values and we have run the experiment for 10 iterations
of every combination of readConcern, writeConcern as well as the document size
(readConcern, writeConcern, Document size). So, in total for each setup the ex-
periment is run 240 times. And as there are 3 setups, so in total the experiment is
run for 720 times. There are total 3 setups of our experiment which are as follows:

1. Operation-Level consistency: Our first experiment setup consisted of a Sin-
gle reader and single writer for our MongoDB database. The writer con-
tinuously writes into the database with a time between two writes of one
sec. Similarly, the reader continuously reads from the database where the
time between two reads is one msec. In this setup, the writer writes a hun-
dred documents in the database, with the time between the insertion of two
documents being one second. And the reader continuously reads from the
database until the writer is writing into the database. Both the writer and
reader are implemented through multithreading in Java to simulate concur-
rency. We measure the write latency, the read latency, and the stale reads.
We have used operation level consistency for this setup wherein we specify
the writeConcern and readConcern values for each individual operation.

16

2. Session-Level consistency: Our second experiment setup consists of a Single
writer and a single reader, with the writer writing into the database with the
time difference between two writes being 1 second and the reader reading
continuously from the database with the difference between two reads is one
millisecond. In session-level consistency, we specify the writeConcern and
readConcern values in the connection string itself rather than the write and
read operation. For example, the normal connection string looks as follows:

mongodb://localhost:27017/?replicaSet=rs1.

Now, if we specify the writeConcern or readConcern in the connection string,
it looks as follows:

mongodb://localhost:27017/?replicaSet=rs1&w=<wc_level>&r=<rc_level>

In this setup, same as the above setting, the writer inserts a hundred docu-
ments in the database, and the reader keeps reading from the database until
the writer finishes insertion.

3. Multiple Reader-Writer: Our third experiment setup consists of multiple
writers and readers performing simultaneous write and read operations into
the database. Here, we have taken two writers who write into the database,
with the difference between the two writes being one second and ten readers
continuously reading from the database with the time difference being one
millisecond. The two writers write a hundred documents into the database
and all ten readers reads from the database until both writers finish execu-
tion. The purpose of having multiple writers and readers is to increase the
concurrency of operations and the workload on the MongoDB server and
the replica set.

17

4.3 Results

In this experiment, we tested the consistency of a distributed database system un-
der different conditions. Specifically, we examined operation-level consistency,
session-level consistency, and multiple reader-writer consistency. The goal of the
experiment is to determine how different factors, such as write concern, read con-
cern, and document size, affect the consistency of the database system. In all
the figures we have taken the readConcern pair on the x-axis which shows the
writeConcern of the write operation as well as the readConcern of the read op-
erations that are happening in parallel. And on the y-axis we have specified the
values which we are measuring which can be either write latency or read latency
or percentage stale reads.

Figure 4.2: Write Latency with different writeConcern and readConcern settings

4.3.1 Anomaly in Write latency

In Fig.4.2 we can see that the Write Latency increases as we use stronger writeCon-
cern values. Here, the write latency for writeConcern: "majority" is much higher
than writeConcern: "local". Also, we have mentioned readConcern along with the
writeConcern in the figure above because we can observe that the write latency

18

for readConcern: "linearizable" is higher than its other two configurations. And
similar pattern is observed even on increasing the document size. So, the ques-
tion that arises is whether the readConcern of the read operations happening in
parallel affects the write latency of the write operation even if both the writer and
reader are in separate processes. And the answer we have found is that yes, it
is possible that the readConcern: "linearizable" of a read operation can affect the
write latency of another write happening simultaneously in MongoDB.

When a read operation with "linearizable" readConcern is executed, MongoDB
ensures that the read operation returns the most recent committed data at the time
the operation is initiated. This requires MongoDB to lock the database at a point in
time, which means that no writes can be committed to the database after the lock
is acquired until the read operation is completed. As a result, any concurrent write
operations that happen during the time that the lock is held will be blocked until
the read operation completes, which can lead to increased write latency. Addition-
ally, MongoDB uses a technique called "commit quorum" to ensure the durability
of write operations. When a write operation is executed with a writeConcern
level of "majority", MongoDB requires that a majority of the replica set members
acknowledge the write before it is considered committed. This means that if a
read operation with "linearizable" readConcern is executing at the same time as
a write operation with "majority" writeConcern, the write operation may have
to wait for the read operation to complete before it can get the required number
of acknowledgements from the replica set members, leading to increased write
latency.

4.3.2 Operation-Level Consistency Setting

The figures from Fig.4.3 to Fig.4.9 are of the first setup of the experiment which is
the operation-level consistency setup where the consistency settings are applied
at the operation level. In Fig.4.3 and Fig.4.4 it can be observed that write latency
tend to increase as the consistency level becomes stronger. This is expected as
stronger consistency levels require more communication between nodes and can
lead to increased latency. In the figures, we can also see that the write latency
increases as the document size increases and the increase in write latency appears
to be linear with respect to the increase in document size.For writeConcern:"local",
we can see that there is a major spike in write latency when the document size is
1 MB and the reason for that could be that the larger the document size, the more
time it would take to insert and hence causing the write latency.

19

Figure 4.3: Comparison of Avg. Write Latencies for writeConcern: local

Figure 4.4: Comparison of Avg. Write Latencies for writeConcern: majority

20

In Fig.4.5, Fig.4.6 and Fig.4.7, we can see that read latency increases as the
consistency level increases, similar to what is observed for write latency. Addi-
tionally, it can be seen that the readConcern level has a larger impact on read
latency than the writeConcern level has on write latency. This is because read op-
erations in MongoDB can be affected by the consistency level more significantly
than write operations, as reads may need to wait for the latest data to propa-
gate across the replica set in order to ensure linearizable reads. The document
size has a minor impact on the read latency, which can be seen in the figures,
as when the document size increases, the read latency does not increase signifi-
cantly. now, in Fig.4.8 and Fig.4.9 we can observe that the stale reads decreases
as the writeConcern and readConcern values become more strict. For example,
when we use writeConcern:- Majority and readConcern:- Linearizable, there are
almost no stale reads for any document size. This is because these settings ensure
that the data is written and read from a majority of replica set members and in a
linearizable order, respectively.

Figure 4.5: Comparison of Avg. Read Latencies for readConcern: local

21

Figure 4.6: Comparison of Avg. Read Latencies for readConcern: majority

Figure 4.7: Comparison of Avg. Read Latencies for readConcern: linearizable

22

In Fig.4.8 and Fig.4.9, we can see that stale reads increase significantly with the
increase in document size but only for (writeConcern:"local" ,readConcern:"majority")
and (writeConcern:"majority",readConcern:"local"). The reason for that could be
when a write operation is performed with writeConcern:"local", it means that the
write operation must be acknowledged by at least one replica set member before
the operation is considered successful. However, the read operation is performed
with readConcern:"majority", which means that the read operation only considers
data that has been acknowledged by the majority of replica set members.

This difference in writeConcern and readConcern levels can lead to a situa-
tion where a read operation may return stale data if the majority of replica set
members have not yet acknowledged the write operation, even if the write oper-
ation has been acknowledged by the primary node. This effect can become more
pronounced with larger document sizes, as there is more data to replicate and
acknowledge.

On the other hand, when the write operation is performed with writeConcern:-
majority and the read operation is performed with readConcern:- local, it means
that the write operation must be acknowledged by the majority of replica set
members, and the read operation only considers data from the local replica set
member. In this case, the potential for stale reads is reduced since the read opera-
tion only considers data that is immediately available on the local replica set mem-
ber, regardless of whether it has been acknowledged by the majority of replica set
members or not.

23

Figure 4.8: Comparison of Percentage Stale Reads for writeConcern: local

Figure 4.9: Comparison of Percentage Stale Reads for writeConcern: majority

24

4.3.3 Session-level Consistency Setting

This section discusses the results of the session-level consistency setup. As dis-
cussed before, in this setup we specify the consistency level when we start a ses-
sion rather than during each and every individual operations. Although many
of the results obtained for session-level consistency were similar to that of the
operation-level consistency setting, we were able to confirm the trends that were
seen in the operation-level consistency setup. There is no significant difference
in the write latency and read latency for any configurations while comparing the
results of session-level consistency and operation-level consistency.

In Fig.4.10 and Fig.4.11 we can see that the increase in document size leads to
an increase in write latency which is similar to the one seen in operation-level con-
sistency. Also, the write latency increases as we use stricter writeConcern values
which are expected.

Figure 4.10: Comparison of Avg. Write Latency for writeConcern: local

25

Figure 4.11: Comparison of Avg. Write Latency for writeConcern: majority

In Fig.4.12 and Fig.4.13 and Fig.4.14 we can see that the read latency is not
much affected by the increase in document size. But there is an increase in read
latency as we use stricter readConcern values.

Figure 4.12: Comparison of Avg. Read Latencies for readConcern: local

26

Figure 4.13: Comparison of Avg. Read Latencies for readConcern: majority

Figure 4.14: Comparison of Avg. Read Latencies for readConcern: linearizable

27

For Fig.4.16 we get the least amount of stale reads for writeConcern: "ma-
jority" and readConcern: "linearizable". And also in Fig.4.15 and Fig.4.16 there
is an increase in the percentage of stale reads when increasing document size for
(writeConcern: "majority",readConcern: "local") and (writeConcern: "local",readConcern:
"local") for the same reasons which were discussed in the operation-level consis-
tency setup. There is a slight increase in the percentage stale reads for writecon-
cern: "local" and readConcern: "local" when increasing the document size which
can be seen in Fig.4.15.

Figure 4.15: Comparison of Percentage Stale Reads for writeConcern: local

28

Figure 4.16: Comparison of Percentage Stale Reads for writeConcern: majority

4.3.4 Multiple Reader and Writer Setting

We had taken multiple readers and writers in this setup to increase the concur-
rency of operations and observe the performance of MongoDB.All the readers and
writers were executed in different processes and were not interacting with each
other. Fig.4.17 to Fig.4.23 show the results of the multiple reader-writer setup and
the trends that we can see while varying the document size.

In Fig.4.17 and Fig.4.18 we can observe that the write latency increases as the
document size increases and also the write latency increases as we use stricter
writeConcern values. The write latency observed in each case is more then when
we were using single writer and single reader. By increasing the number of read-
ers and writers or in other words, by increasing the concurrency of operations in
the system, we can see that the write latency has increased for every document
size.

29

Figure 4.17: Comparison of Avg. Write Latency for writeConcern: local

Figure 4.18: Comparison of Avg. Write Latency for writeConcern: majority

30

And now discussing about the Read latency, In Fig.4.19 and Fig.4.20 and Fig.4.21,
we can see that the average read latency has increased for only (writeConcern: "lo-
cal",readConcern: "local") and (writeConcern: "majority",readConcern: "lineariz-
able") and for every document size. Also, there is a minor increase in read latency
while increasing the document size.

In Fig.4.21, we can see that there is an increase in read latency when com-
pared to operation-level consistency and session-level consistency but only for
readConcern: "linearizable". There is no visible change in read latency for other
readConcern values. Also, there is huge increase in read latency when we use
linearizable readConcern then when we use the other two readConcern values.

Figure 4.19: Comparison of Avg. Read Latencies for readConcern: local

31

Figure 4.20: Comparison of Avg. Read Latencies for readConcern: majority

Figure 4.21: Comparison of Avg. Read Latencies for readConcern: linearizable

32

In Fig.4.22 and Fig.4.23, we can observe that when we look for the percent-
age of stale reads, they are increasing as compared to operation-level consistency
or session-level consistency because of the increase in the workload of the sys-
tem. Also, a similar trend is observed for this setup also, where the percentage of
stale reads were increasing with document size for the pairs (writeConcern: "lo-
cal",readConcern : "majority") and (writeConcern: "majority",readConcern: "lo-
cal"). Also, some linear increase in stale reads with increasing document size is
observed for writeConcern: "local" and readConcern: "linearizable".

Figure 4.22: Comparison of Percentage Stale Reads for writeConcern: local

33

Figure 4.23: Comparison of Percentage Stale Reads for writeConcern: majority

34

CHAPTER 5

Conclusion and Future work

5.1 Conclusion

In this section, we provide the summary of the results obtained by varying the
readConcern and writeConcern settings and the document size in our experiment.
We compare readConcern:- linearizable with readConcern:- majority and the per-
formance trade-offs that come with using the stronger readConcern values.

• For baseline concurrency, using "linearizable" readConcern resulted in 1.54
ms increase in the write latency and 32 ms average increase in the read la-
tency compared to when we use the "majority" readConcern.

• The average difference in the amount of stale reads is 1.67%.

We also observe that as the document size and the number of simultaneous writ-
ers and readers increase, the system’s consistency decreases. This means there’s a
trade-off between consistency and scalability.

• Increasing the document size has a significant impact on the write latency,
with the average increase in write latency being 135.89%. However, the doc-
ument size does not have a significant impact on read latency, with the av-
erage increase being only 2.98%.

• For increased concurrency where we use multiple readers and writers, us-
ing linearizable readConcern resulted in 11 ms average increase in the write
latency and 51.92 ms average increase in the read latency.

• The difference in the amount of stale reads is 2.73%.

Both writeConcern and readConcern majority provide a proper balance between
the consistency guarantee and the write and read latency with some reasonable
amount of stale reads.

35

5.2 Future work

Looking ahead, there are several possibilities for future research. Firstly, one could
explore different workloads and benchmarking methods to gain a deeper under-
standing of MongoDB’s consistency behaviour. One could also investigate how
network latency and geographic distribution affect consistency, especially in dis-
tributed database environments. Furthermore, it would be valuable to explore al-
ternative consistency models and techniques for MongoDB, which could involve
experimenting with different combinations of writeConcern and readConcern set-
tings or exploring hybrid models that blend strong and eventual consistency guar-
antees.

Lastly, studying how consistency impacts specific application domains and
workloads would be beneficial. By understanding the requirements and trade-
offs in scenarios like e-commerce transactions, real-time analytics, or collaborative
editing, users can make more informed decisions when configuring MongoDB for
their specific use cases.

36

References

[1] Mongodb documentation. https://www.mongodb.com/docs/, 2023. Accessed:
June 2023.

[2] D. Abadi. Consistency tradeoffs in modern distributed database system de-
sign: Cap is only part of the story. IEEE Computer, 45:37–42, 02 2012.

[3] E. Brewer. Towards robust distributed systems. page 7, 07 2000.

[4] C. Huang, M. J. Cahill, A. D. Fekete, and U. Röhm. Data consistency properties
of document store as a service (dsaas): Using mongodb atlas as an example.
In TPC Technology Conference, 2018.

[5] H.-R. Ouyang, H.-F. Wei, H.-X. Li, and et al. Checking causal consistency of
mongodb. Journal of Computer Science and Technology, 37:128–146, 2022.

[6] W. Schultz, T. Avitabile, and A. Cabral. Tunable consistency in mongodb. Proc.
VLDB Endow., 12(12):2071–2081, aug 2019.

[7] M. van Steen and A. Tanenbaum. Distributed Systems. distributed-systems.net,
3rd edition, 2017.

[8] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, jan 2009.

37

https://www.mongodb.com/docs/

	1e0fd41397bb9b469a1976f6cd27a2675e8d237ab1cd87aedadda6f49c636209.pdf
	1e0fd41397bb9b469a1976f6cd27a2675e8d237ab1cd87aedadda6f49c636209.pdf
	1e0fd41397bb9b469a1976f6cd27a2675e8d237ab1cd87aedadda6f49c636209.pdf
	Abstract
	List of Figures
	Introduction
	What is Consistency and Consistency in MongoDB
	Motivation
	Problem Statement
	Our Contribution
	Outline

	Background
	Eventual Consistency
	Linearizability in MongoDB
	Consistency Settings in MongoDB
	writeConcern
	readConcern
	Consideration and Tradeoffs

	Literature Survey
	Checking Causal Consistency of MongoDB
	Tunable Consistency in MongoDB
	Data Consistency Properties of Document Store as a Service (DSaaS)
	Summary of Literature Survey

	Experimentation and Results
	Experimentation Setup
	Experimentation Details
	Architectural overview
	Performance Metrics
	Varied Parameters

	Results
	Anomaly in Write latency
	Operation-Level Consistency Setting
	Session-level Consistency Setting
	Multiple Reader and Writer Setting

	Conclusion and Future work
	Conclusion
	Future work

	References

