
Empirical Study Of Smartphones As An
Edge Device

by

SHAH VYOM HITESHKUMAR
202111012

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

Acknowledgments

First and foremost, I would like to express my gratitude to my research supervisor
and mentor, Prof PS. Kalyan Sasidhar, for his invaluable guidance and dedicated
involvement in every aspect of my work. His detailed explanations and humble
attitude profoundly impacted me, and his focused vision steered me in the right
direction. I am thankful for his instruction on research methodology and for pre-
senting research work on various platforms. Additionally, I am grateful for the
workspace he provided me and for making me a part of the ’UbiSense Lab’ in
lab-003. I also appreciate the workstation he gave me to complete my research.

I deeply thank Prof Bhaskar Chaudhary for his unwavering support, encour-
agement, and insightful feedback. His constructive criticism has challenged me to
think critically and creatively, enabling me to reach my full potential. His exper-
tise, dedication, and commitment have shaped my intellectual growth and suc-
cess.

I would also like to thank my lab colleague, Jaineel Trivedi, for assisting me
throughout the process and providing me with theoretical knowledge about the
project. I would be remiss not to mention PhD scholars Pramod Tripathi and
Maitri Vaghela for providing me the guidance for the research.

I am thankful to my friends and the entire MTech-2021 class for helping me
throughout the two-year road to finish my MTech program and Thesis, which
required more than just academic assistance. I want to express my gratitude to my
friends Vinay Sheth, Harsh Savaliya, Dhara Mehta, Kavan Hajare, Rohit Mishra,
and many more for supporting me during the entire journey.

Lastly, I would like to thank my parents and family for their constant belief in
me and their unwavering support throughout the process.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Organization of Thesis . 1
1.2 Overview of Edge Computing . 3
1.3 Evolution of Smartphones . 5
1.4 State of the art of Computational power (Server) 6
1.5 Issues and Challenges in Server . 6
1.6 Phone as a Computing Platform (PaaP) 7
1.7 Why Smartphones are advantageous ? 7
1.8 Motivation . 7
1.9 Problem Statement . 8
1.10 Chapter Summary . 8

2 The Rise of Smartphones 9
2.1 Are smartphones nearing the processing speed capabilities of PCs? 9
2.2 Improvements in the hardware of smartphones(SoC) 10
2.3 Improvements in Processor Clock Speed 11

2.3.1 Need of more number of cores 11
2.4 Improvements in Random-access Memory(RAM) 12
2.5 Chapter Summary . 12

3 Literature Survey 13
3.1 Chapter Summary . 16

iii

4 Proposed Architecture 17
4.1 Master Slave Paradigm . 17

4.1.1 Our System Architecture . 17
4.2 Map Reduce . 21

4.2.1 Map-reduce application on our Master-Slave Architecture . 22
4.3 Chapter Summary . 23

5 Methodology 24
5.1 Setup . 24

5.1.1 Hardware Setup . 24
5.1.2 Software Setup . 25

5.2 Experiments Performed . 26
5.2.1 Word Count Application . 26
5.2.2 Average of Temperature data 29

5.3 Indoor Localization . 36
5.4 Chapter Summary . 36

6 Indoor Localization 37
6.1 Data Collection . 37
6.2 Dynamic Time Warping . 38

6.2.1 Sliding Window . 39
6.2.2 Methodology . 40

6.3 Chapter Summary . 43

7 Performance Evaluation 44
7.1 Word Count and Average of Temperature Data 44

7.1.1 Scenario1-Thread count constant 44
7.1.2 Scenario2- File chunk size constant 45
7.1.3 Comparison with Desktop . 46

7.2 Dynamic Time Warping . 48
7.2.1 Time Comparison with single device 48
7.2.2 CPU utilization . 50

7.3 Chapter Summary . 51

8 Conclusion and Future Work 52
8.1 Conclusion . 52
8.2 Future Scope . 52

References 53

iv

Abstract

Increased automation and intelligence in computer systems have revealed Cloud-
based computing constraints such as unpredictable latency in safety-critical and
performance-sensitive applications. Features of smartphones attract researchers
more towards using smartphones as edge computing devices because of the pres-
ence of the sensors inbuilt and the computing powers of CPU cores. So a smart-
phone is a combination of IoT and Edge computing devices.

To overcome the usage of high-end computing devices at the edge layer, this
article proposes the idea of using a smartphone as an edge device for process-
ing data. Sensors or IoT devices generally send data to the edge device rather
than directly sending it to the cloud for processing. So mainly, this article empha-
sizes solving the research question of whether smartphones can be used as edge
devices. So in this, a distributed smartphone system following master-slave ar-
chitecture is proposed, which helps to distribute the computation power among
slaves. Word count, average of temperature data and indoor localization. Com-
pared to desktop PCs computation, master-slave utilizes CPU 75% more than just
on single-device computation and on an average 50% faster than on computing
on a single device. This motivates us to design an architecture that can utilize
the data from the cloud and perform the computation using the CPU cores of the
smartphone.

v

List of Principal Symbols and Acronyms

α temperature data as key

β(α) count of α found by thread

δ A single window

ω Total windows

ρi final count of key αi aggregated by master

ζi count of αi aggregated by slave

CWC Computing

DTW Dynamic Time Warping

HPC High-Performance Computing

master_DTW minimum DTW distance found at master

MR Map Reduce

MS Master-Slave

slave_DTW minimum DTW distance found at slave

U Total number of keys

vi

List of Tables

5.1 Mobile Specifications . 24

6.1 Number of windows created with different test signal sizes 43

7.1 Comparison of Desktop with mobile 46

vii

List of Figures

1.1 Organization of Thesis . 2
1.2 (a) Cloud (b) Edge Layer . 4
1.3 Edge Computing . 5

2.1 Evolution of Clock speed of mobiles 11

4.1 Master-Slave Architecture . 18
4.2 Sending File to master . 19
4.3 Dividng File among Slaves . 19
4.4 Thread Count Constant . 20
4.5 File Chunk Size Constant . 21
4.6 Word count using Map reduce [22] 22

5.1 IoT testbed . 25
5.2 Workflow of mapreduce application 26
5.3 Hardware Architecture . 29
5.4 Computation time vs Thread Management time 33
5.5 Master Slave Connection . 35

6.1 User Interface of Usage Tracker . 37
6.2 Different Signals . 38

7.1 Case 1: CPU utilization with increasing file sizes 44
7.2 No of threads with increasing file sizes 45
7.3 Case 2: CPU utilization with increasing file sizes 46
7.4 Time comparison of mobile with desktop 47
7.5 Time comparison with a single device for 12 database signals 48
7.6 Time comparison with a single device for 24 database signals 49
7.7 Time comparison with a single device for 36 database signals 49
7.8 Time comparison with a single device for 48 database signals 50
7.9 Time comparison with a single device for 60 database signals 50

viii

7.10 CPU utilization for DTW . 51

ix

CHAPTER 1

Introduction

1.1 Organization of Thesis

A flow diagram for the organization of the thesis is shown in Figure 1.1.

Chapter 1 (Introduction): This chapter briefly describes edge computation, the
evolution of smartphones, and issues with the server as an edge device and then
I have provided the motivation for this thesis and problem statement.

Chapter 2 (Rise of smartphones): This chapter discusses about the evolution
of smartphones, that how both hardware and software of the device has been im-
proved in last few decades.

Chapter 3 (Literature Survey): This chapter discusses the existing work where
smartphones are used as an edge device. And also some of the issues and chal-
lenges regarding the edge and cloud computing paradigm, which can be resolved
with the use of smartphones as edge devices for specific workload/tasks.

Chapter 4 (Proposed Architecture): This chapter talks about the propsed ar-
chitecture based on master slave using smarphones and idea on how map-reduce
can be implemented on mobiles using this architecture

Chapter 5 (Methodology): This chapter will talk about the actual system archi-
tecture of master-slave developed for our application and a detailed description
of the working of two applications on this architecture.

Chapter 6 (Indoor Localization):Brief description of how to find the location of
person based on magnetic field using master slave architecture is been discussed
in this chapter.

1

Figure 1.1: Organization of Thesis

2

Chapter 7 (Performance Evaluation): This chapter will give an overview of the
behavior of our algorithm based on the three metrics CPU utilization, time, and
scalability.

Chapter 8 (Conclusion and Future Work): This chapter concludes my work
and discusses the future possibilities of work that could be done to improve the
system.

1.2 Overview of Edge Computing

With the rapid development of the Internet of Things (IoT), the number of in-
telligent devices connected to the Internet is increasing. Cisco claims that there
will be 29.3 billion devices by 2023, resulting in large-scale data [20]. Traditional
cloud computing models incur bandwidth load, slow response speed, poor secu-
rity, and poor privacy. To reduce the latency, edge and fog computing solutions
have arisen. Edge computing facilitates the execution of computations at the net-
work’s edge - proximity to the user and proximity to the source of the data. It is
lightweight at the network’s edge for local, small-scale data storage and process-
ing.

Edge computing [18] extends computational, network connectivity, and stor-
age capabilities from the cloud to the network’s edge. It permits business logic
between the upstream data of the Internet of Things and the downstream data of
the cloud service (IoT). Edge computing offers further advantages of agility, real-
time processing, and autonomy in the area of Industrial IoT to provide value for
intelligent manufacturing. In most IoT applications, sensor data is gathered from
diverse sensors on a server for data analysis. For instance, the analysis could be as
simple as calculating a region’s average temperature or air quality. However, the
computation may require good computing power considering smart city applica-
tions with high volume/variety of data from wearable sensors, deployed sensors,
cameras, etc.

3

(a) (b)

Figure 1.2: (a) Cloud (b) Edge Layer

Fig. 1.2(a) shows the simple architecture of Cloud Computing where the end
devices are directly connected to the cloud. The raw data will be directly sent to
the cloud. Fig. 1.2(b) shows the simple architecture of edge computing, where
there is an extra edge layer between the end devices and the cloud, where the raw
data will be stored locally, and some computations can be done. Then the refined
data will be sent to the cloud.

In edge computing, an edge serves as a gateway between the cloud and the
data-generating devices. Any edge device, from smartphones to industrial equip-
ment, can produce data that needs analysis. As a mediator, the edge server gath-
ers data from the devices and transmits it to the cloud for additional processing.
This makes it possible to use less bandwidth and respond more quickly. The use
of edge computing has the potential to change how we interact with the Internet
completely. Edge computing enables programs to be more responsive and effec-
tive by moving computation and data storage closer to the point of use.

Edge computing can drastically reduce latency by moving computation and
storage closer to the data source. This is especially crucial for real-time process-
ing applications like self-driving cars and health applications. As most of the
data can be processed at the edge, i.e., near the sensors, the bandwidth efficiency
can also be improved. Another main advantage of using an edge server is that
data will not be transferred to the cloud over the Internet. Instead, the raw data
will be stored and processed locally near the sensors at an edge server. The use
of edge computing has the potential to change how we interact with the internet
completely. Edge computing can increase applications’ responsiveness, efficiency,

4

and security by moving computation and data storage closer to the point of use.

Figure 1.3: Edge Computing

Researchers are more focused on creating a local server environment where
vital data can be stored or processed before sending it to the centralized data cen-
ter or cloud storage repository. The below figure illustrates the paradigm of edge
computing, creating a server or network of servers which can act as a middleman
between IOT devices and the cloud.

1.3 Evolution of Smartphones

Nowadays, smartphones have quickly supplanted feature phones as the most
common design for mobile devices. By the end of 2023, smartphones are expected
to make up 90 percent of mobile devices used worldwide, according to [55], the
rapid technological development of mobile handsets, from communication de-
vices with fixed features to general-purpose devices with increased computational
power and network connectivity, is reflected in the popularity of smartphones.

We will discuss about the rise of smartphones in the last decade in detail in the
next chapter.

5

1.4 State of the art of Computational power (Server)

Advancements in the computational power of servers have improved in the last
decades[43]. Servers comprise high computing power, where they can handle
more than one computation request of the clients/users. These servers are used
in client-server, i.e., the client will request the specific task, and the server will do
the job and revert it back to the client. Using this architecture, even if the client has
no high computational setup, it can also see the specific task’s results or output.
They are equipped with advanced networking capabilities, which give them the
power to handle a significant amount of data traffic and give smooth communica-
tion between the client and server. Servers also play an essential role in tasks that
needs high computational power. They are made to efficiently compute complex
functions like machine learning, data analytics, etc. This architecture is efficient
for cloud computing systems [45]. Traditionally, a conventional PC had been used
to set up a small server that can facilitate the requests of the clients.

1.5 Issues and Challenges in Server

Although servers are undoubtedly the most powerful computers available today,
there are a few drawbacks to be aware of. Firstly they can be costly to purchase
and maintain and also require high technical expertise for smooth and efficient
operations. A typical AWS server costs you around $52.57 for a month[51, 7],
even if you are doing high computational tasks. As the server act as a central
point of the architecture, failure in the server can disrupt the entire system; yes,
there are solutions for this, like duplicating the data at different nodes/servers.
Still, this may not be feasible or cost-effective for a small server setup. Delay in
sending and receiving messages is also a significant disadvantage due to many
reasons like network error, excessive traffic on the server, etc. To overcome these,
we can use the edge layer architecture that instead of entirely relying on the cloud
servers. Running a server also requires high energy input, i.e., it consumes more
power. For example, let us take a PC acting as a server with an Intel Core i3,
which will consume approximately 50*(1+2.5)*6 = 1050 WH(Watt-Hours) if we
keep it running for 6 hours. Here 2.5 indicates that every Watt consumed requires
2.5 Watts for cooling and power distribution [1]. Also, due to the extensive use of
servers which leads to more power consumption, it also emits more carbon diox-
ide to the environment, which leaves a carbon footprint[53]. The authors of this

6

paper did an empirical study of using smartphones as a server/computing device
for specific tasks and proposed an architecture for the same.

1.6 Phone as a Computing Platform (PaaP)

As discussed in the above chapters, the recent advancements in hardware and
software of smartphones, they can also be used as a computational device. From
the fig 2.1 we can see that the performance of the SoC or the processor clock speed
has increased significantly compared with the conventional PCs.

Former studies show that we can use a smartphone as a computing platform
[53, 12, 48], where the researchers have shown with different empirical studies
that smartphones are capable of complex computations too. Edge computing ap-
plications like health care, smart city, and smart farming in these different appli-
cations we can use smartphones as local computational devices.

1.7 Why Smartphones are advantageous ?

Smartphones are the most used computing device in the world. According to [3],
India will have around 1 billion smartphones by 2026. Also, as discussed in the
above sections, the computing power of smartphones has increased significantly,
and it is still improving. However, the irony is that such high computing power
is under-utilized. Apart from gaming applications on phones, not many apps uti-
lize CPU power. For instance, according to[38], we found that the most commonly
used applications were Whatsapp, Instagram, and Snapchat, which utilized only
a fraction of the CPU despite being used for an entire day. Gaming apps were
observed to be used for a mere 2-3 hours/per week. We can use smartphones’
computing power to utilize it for complex specific tasks efficiently.

1.8 Motivation

Many applications such as smart farming, data analysis, smart home, and smart
city use IoT sensors and edge computing devices for computation as a dedicated
local server. Although not too much computation is required, high-end comput-
ing devices are kept as edge devices. Nowadays, people tend to change mobile

7

phones every 2-3 years even though older ones are in working condition. Basi-
cally, older ones will create e-waste if not kept in use. To bring the computation
power from idle to some extent, we can aim to use the mobile phone as an edge
device, replacing the conventional server at an edge layer. Multiple phones can
provide even high computation power, so one of the motives is to propose an ar-
chitecture that can effectively utilize the computation power. This can optimize
resource utilization as well as can be cost-effective, which can eliminate the use of
high-end computing devices.

1.9 Problem Statement

This thesis revolves around using the capabilities of multiple smartphones as edge
devices to utilize their computing power. Computation is distributed using the
master-slave paradigm, and along with multithreading tasks can be executed in
parallel. The master, as a central device divide task among slaves, and these slaves
perform computations using multithreading and then sends results back to the
master. Inbuilt sensors of mobile phone can help person to locate its location in
the indoor environment using the master-slave architecture of mobile phones.

1.10 Chapter Summary

In this chapter, we have discussed about edge computing, the capabilities of smart-
phones, can we use smartphones as a computing platform, what are the issues
and challenges, and finally the motivation of the thesis followed by the problem
statement.

8

CHAPTER 2

The Rise of Smartphones

Since their initial release, smartphones have undergone remarkable advancements
in crucial hardware components, leading to rapid expansion in application capa-
bilities. These improvements have also had significant implications for using a
smartphone as a computational device, with the integration of Neural Process-
ing Units (NPUs) in the latest smartphone models. These NPUs enable the im-
plementation of machine learning techniques, such as deep learning, into stan-
dard phone functionalities. This integration has resulted in various enhance-
ments, ranging from better computation power to efficient battery usage, which
leads researchers to think that a smartphone can be used as a computing device.
Along with this, smartphone manufacturers have also started leveraging dedi-
cated deep-learning hardware to improve the overall utilization of smartphones.
However, researchers have started working on using the capabilities of smart-
phones to revolutionize personalized health applications. In this area the smart-
phones are employed in many diverse diagnostic applications, including human
activity recognition[46], human sleep analysis [38], stress analysis[58], and also
heart attack risk prediction [42]. This chapter will discuss the main components
that facilitate these technological advancements, which include smartphone pro-
cessors/ System of Chip(SoC), Random-access Memory(RAM), and battery ca-
pacity.

2.1 Are smartphones nearing the processing speed ca-

pabilities of PCs?

In the past decade, there were seen improvements in the processing speed of
smartphones, and think tanks were saying that smartphones may have a signifi-
cant processing speed as compared to PCs. Comparing the processing power of
both these computational devices was not simple.

9

To compare the processing speed of the smartphones with conventional Pcs
i.e. cross platform, cross architecture, it is necessary to test it with some standard
benchmark tests. And they suggests the performance gap between smartphones
and PCs is decreasing fast and much closer than thinked before. Geekbank5 [24]
is a mainstream benchmark framework which was created by Primate Labs and it
provides the comparison testing of device and its’s CPU performance. It is a cross
platform and cross-architecture, which makes it possible to compare the perfor-
mances of different types of devices. For an instance lets discuss about how it
compare the performance, Geekbench 5 uses Intel Core i3 as the base of different
devices comparison and its test performance scored as 1000. In September 2021,
phone manufacturer Apple releases the latest version of its A-series Bionic SoCs
which they called as “A-15 Bionic” [11]. The preliminary Geekbench 5 results
suggest that the processing speed of A15 approaches even more than that of the
Intel’s latest mobile CPUs.

The processing speed of smartphones is indeed approaching that of the most
recent generation of PCs, as seen by the latest smartphones[9, 33], whether they
run the iOS or Android operating systems. This is advantageous for using the
smartphone for on-device processing and analytics rather than doing it elsewhere,
in addition to using it for data collection.

2.2 Improvements in the hardware of smartphones(SoC)

In the past decade, there were seen improvements in the main smartphone’s hard-
ware i.e., SoC of the phone. An SoC is the main heart of the smartphone, where
different chips are integrated. SoC typically has 3 major components, CPU/processor
cores for computation, RAM for the local temporary storage of the computational
data as well as dedicated input/output(I/O) interfaces for data accessibility by
the other components [19].

Application-specific integrated circuits (ASICs) for accelerated video-encoding
(camera record) and decoding (video playback) applications are now included in
more modern SoCs. Additionally, SoCs provide wireless communication through
Bluetooth, Wi-Fi, and compatibility for older cellular networks, whereas future
networks, such as fifth-generation "5G," are frequently initially provided on sepa-

10

rate hardware[41]. Since the SoC in every smartphone device is the main compo-
nent of the current application code, researchers are continuously improving and
enhancing the three crucial aspects of SoC design that have brought performance
levels up to par with those of laptop computers today.

2.3 Improvements in Processor Clock Speed

Clock speed, the number of processing cores, and the core microarchitecture are
some of these aspects. [52]. The clock speed of a processor is the rate at which
the CPU generates clock pulses to control all the functions including arithmetic,
logic and data transfer for fetching and storing from RAM and external storage
[50]. The advancements in the clock speed of the processors is showed in the fig
2.1, where the the processing speed has been increased significantly.

Figure 2.1: Evolution of Clock speed of mobiles

A CPU can execute software code more quickly and a mobile device appears
to operate more quickly the higher the clock speed. In terms of smartphone SoCs,
CPU clock speed is expressed in "Hertz".

2.3.1 Need of more number of cores

The more the number of cores the better computation power you can have. In the
last decade the number of cores a processor of a smartphone has, has increased to
8, and research on multicore processors is still going on. A modern processor core

11

consists of many millions of transistors.And electric signals are lept switching this
transistors. The transistors’ maximum switching frequency determines the max-
imum clock speed of a processor [5]. Hence, there is a limit to the clock speed of
any processor.

To overcome this limitation of maximum clock speed, the solution was to in-
crease the number of processor cores. A processor with more than one processor
is enable to split a coded application to split the time consuming comples code
into various threads. Each thread can be processed on a separate core, thus mak-
ing the code parallely computing, will decrease the overall code execution time
[57].

2.4 Improvements in Random-access Memory(RAM)

In smartphones, RAM is a high-speed volatile memory storage for temporarily
storing the data related to the on-going processes or computations. More the
RAM, larger and data intensive application can be executed on the phone.

The amount of RAM in smartphones has significantly increased over the last
ten years. Devices quickly advanced from 256MB to 512MB of RAM, with lim-
ited memory capacity, reaching 1GB of RAM around 2010. AdvancLater, RAM
capacities of 2GB and 3GB were the norm, enhancing multitasking efficiency and
performance. 4GB of RAM became the industry standard by 2016–2017, greatly
boosting smartphone performance. The RAM capacities of smartphones have in-
creased in recent years, reaching 6GB, 8GB, or even 12GB [10]. The capacity to
multitask and manage resource-intensive tasks has significantly increased thanks
to these developments and software optimisations.

2.5 Chapter Summary

In this chapter, we have discussed the rise of smartphones in all the major aspects.
The idea of this chapter was taken from [58], where the authors have explained
the rise of smartphones.

12

CHAPTER 3

Literature Survey

Several works have already been done on using the power of smartphones effi-
ciently. As we have discussed earlier about the capabilities of smartphones and
how efficiently we can use the smartphone for different purposes.

Authors in [49] explore the potential of using smartphones as alternative com-
puting engines for cloud-based applications. Traditionally, cloud computing re-
lies on centralized data centers to process and store data, requiring significant in-
frastructure investments and energy consumption. However, the rapid advance-
ments in smartphone capabilities, such as processing power, storage capacity, and
network connectivity, have opened up new possibilities for leveraging these de-
vices as distributed computing resources. The authors highlight several benefits
of using smartphones as alternative cloud computing engines. First, smartphones
are ubiquitous, with billions of devices in use worldwide. This widespread adop-
tion allows for a vast network of distributed computing resources, potentially
leading to enhanced scalability and improved performance for cloud-based ap-
plications. Moreover, smartphones are equipped with various sensors, such as
cameras, accelerometers, and GPS, which can enrich the capabilities of cloud ap-
plications by providing contextual information and enabling new types of ser-
vices.

Another advantage of utilizing smartphones for cloud computing is their mo-
bility. Unlike traditional data centers, smartphones are mobile devices that can
move closer to the end-users or specific locations where computing resources are
needed. This proximity can reduce latency, improve response times, and enable
edge computing capabilities, enhancing the overall user experience. In conclu-
sion, the paper highlights the potential benefits of leveraging smartphones as al-
ternative cloud computing engines, including scalability, performance improve-
ments, mobility, and potential environmental advantages.

13

The concept of Smart farming [14] is related to real-time data gathering, pro-
cessing, and analysis, as well as automating the technologies used in farming.
Moreover, it can also help the farmers in decision-making regarding farming pro-
cedures. Here authors are using the smartphones just for collection of data and
sending the data to a local or cloud server.A similar kind of study has been done
by the authors in[31], where they discuss using a smartphone or tablet, a herd
management system that enables cow ranchers to manage their dairy or beef
herds.. MooMonitor+ [21] uses wearable collars to track the health and fertil-
ity of each individual cow, allowing farmers to keep an eye on their entire herd
from their phones. Map your meal [2]is a smartphone app focused on agriculture
that explores the world’s food system with the goal of raising public awareness
of global interconnectedness. Farmers and customers may use this smartphone
app to scan products to determine how fair and environmentally friendly they
are. Finally, FoodLoop[37] provides real-time deals on "nearly expired" products
and connects the grocer inventory system and smart tagging to consumer-facing
mobile applications to help the reduction of food waste. In this [35], the authors
propose developing a system optimally watering agricultural crops based on a
wireless sensor network. The system consists of three components: hardware,
web application, and mobile application. Soil moisture sensors are used to mon-
itor the field, connecting to the control box. The web-based application manip-
ulates the details of crop data and field information. It applies data mining to
analyze the data for predicting suitable temperature, humidity, and soil moisture
for optimal future management of crop growth. The mobile application is mainly
used to control crop watering through a smartphone.

Authors in [6, 15]contend that a number of crucial IoT services and applica-
tions should be run on the Cloud Computing platform. They contend that Fog
Computing supports a new breed of apps and services rather than focusing on
Cloud Computing. The article is divided into sections that outline and introduce
the Fog Computing paradigm’s properties. They then closely examine a few note-
worthy apps and services that support their claim that the Fog is an essential part
of the platform needed to support the Internet of Things. Another interesting
research study and implementation of smart city[36], where the authors have dis-
cussed about conceputlizing a smart city where the devices are connnected. Au-
thors in [23] have discussed the emerging field of fog computing and how it can
be helpful by creating a whole layer of the computational device, where all the
devices come of a particular city comes under an umbrella and can be used as an

14

edge layer. The authors have estimated the computation power that can be gen-
erated by applying this architecture by making an edge layer of all computational
devices of the city of Barcelona. And they have claimed that it can be 10 to 20
times more potent than an Amazon Web Service(AWS) cloud server.

In recent times researchers have been trying to use the power of smartphones
which are remained idle or are not being utilized, i.e., instead of keeping the
phone idle, efficiently utilizing the power of smartphones. Authors in [12] discuss
the potential of using idle smartphones being charged overnight as distributed
computing infrastructure for an enterprise that supplies its employees with smart-
phones and utilizes smartphones efficiently and as a cost-effective alternative to
running specific tasks on traditional servers. They address the challenges of us-
ing smartphones for computing and develop CWC, a distributed computing in-
frastructure using smartphones. They implement and evaluate a prototype of
CWC that employs a novel scheduling algorithm to minimize the makespan of
a set of computing tasks. The evaluations show that CWC’s scheduler yields a
makespan that is 1.6x faster than other, more straightforward approaches. Junk-
Yard Computing[54, 16] is a new paradigm, and here, authors are discussing uti-
lizing smartphones by creating a cluster in a client-server model and making a
smartphone cluster that can do specific tasks more efficiently than a traditional
server. It introduces the novel concept of "junkyard computing," which repur-
poses discarded smartphones as a computational resource. They demonstrate
that even decade-old smartphones can perform modern cloud microservices and
explore how to combine them to execute complex tasks. They have proposed
a cloudlet comprising reused Pixel 3A phones and assessed the carbon benefits
of deploying large, end-to-end microservice-based applications on these smart-
phones. OpenRTiST[25] is also a similar work, where the authors have created
a benchmark by running specific tasks across traditional servers, mobile-servers
and doing the same task on smartphones. They also discuss how OpenRTiST can
be used as a workload generator in controlled benchmarks to measure motion-to-
photon latency, estimate scalability, and identify performance bottlenecks.

The past decade has seen an exponential rise in smartphone production and
the advancement of hardware specifications. Smartphone CPUs, especially, are on
par with desktop CPUs [44]. In the last five years, there have been smartphones
with quad-core and octa-core processors. However, these multi-core processors
may not be utilized to their full potential barring a few intensive mobile gaming

15

or video streaming applications. For instance, in our recent work [56], we per-
formed an experimental study through a custom-developed app [39] to quantify
smartphone usage. We found that the average phone usage was 7.5 hours/per
day. All phones were running with a quad-core CPU. The most commonly used
applications were Whatsapp, Instagram, and Snapchat, which do not burden the
CPU, even running for an entire day. Gaming apps were observed to be used for
a mere 2-3 hours/per week. This study shows that the phones’ CPU power is left
underutilized. Garcia et al., [23] estimate the computation power of personal com-
puters, smartphones, on-board car computers, WiFi routers, and other embedded
computers across a city to be 19 *1015 instructions per second. They propose the
use of such computing power in place of high-end servers. The earliest attempts
were made by authors in [17], who set up a smartphone cluster to execute an HPC
application and found the performance nearly close to a high-end PC. Further,
work in [12] proposed a distributed framework of smartphones and developed a
scheduling algorithm to schedule and execute three compute-intensive tasks on
smartphones. Recently, a similar study [47] evaluated the performance of Moto x4
and x5 in terms of their computation time and energy consumption while running
matrix multiplication and other algorithms.

3.1 Chapter Summary

Summarizing this chapter, we learned about various methods of using the edge
computing paradigm in an efficient way. We discussed the capabilities of smart-
phones and some real-world applications where smartphones can be used as an
edge devices in a client-server model. I’ve discussed about some of the well-
known works related to smartphone computing and edge computing. In the next
chapter we will discuss about our proposed system architecture and how map-
reduce can be applied on it.

16

CHAPTER 4

Proposed Architecture

4.1 Master Slave Paradigm

In [4] we discovered that mobile phone is capable to perform computation with
the multithreading concept. We came up with an extension of the idea to work
with the master-slave (MS) architecture, which includes the distributed comput-
ing concept and the multithreading concept related to parallelism. So for this
architecture, multiple phones will be used, and we will study whether we can
bring the CPU from idle to active mode. As we have seen in previous chapter 3,
mobile phones are capable of computation power also.

4.1.1 Our System Architecture

Fig 4.1 shows the three-tier master-slave architecture.

• First Layer:- Master handles coordinating as well as dividing tasks among
the slaves and also making decisions for the final answer. Master is the main
point of contact where all data are sent, which is to be computed and also to
get the final answer.

• Second Layer:- As a second layer slaves come into the picture as communi-
cators for transferring data and handling the parallelism of the task given by
the master to it. Slaves are like mediators and are responsible for ensuring
that given task is performed parallel by creating threads.

• Third Layer:- Thread is the actual task performer which does the computa-
tion on the data, which is divided by slave, and then sends the results back
to the slave. Each thread executes a specific portion of the assigned task,
utilizing the available resources efficiently.

Our basic idea is to implement the map-reduce application on the master slave
architecture shown in 4.1 using smartphones to utilize smartphone capabilities.

17

Figure 4.1: Master-Slave Architecture

We have created an android app that works on master-slave architecture and has
been designed so that master and slave applications can be run individually on
mobile phones. The application implements the program of finding the average
of temperarture data program using a concept similar to the map-reduce.

• Collecting Data File
Data collectively stored in a CSV file format will be sent to the master and
expect the output from the master as per the experiment performed on the
master slave architecture.

For example, a CSV file size of 900MB of data passed to the master mobile
phone.

18

Figure 4.2: Sending File to master

• Dividing File among Slaves
After receiving the file, the master will start the server so that slaves in the
same network, whoever wants to connect to the master, will register them-
selves with the master by sending their number of cores. The main reason
to divide the file according to cores is that the computation can be divided
equally with the ratio of the cores due to which one with less number of
cores will get file of smaller size and one with more cores will get file of
large size. Once the master finds enough slaves connected, it will divide the
file among the slaves according to the number of cores using the wireless
network with the help of TCP protocol. The reason for using TCP protocol
is to cover the reliability issue. If Slave1 and Slave2 are registered with the

Figure 4.3: Dividng File among Slaves

19

master with 8 and 4 cores, respectively, then the master will divide the file
in a ratio of 2:1. So Slave 1 will get a file with a size of 600MB, and the other
one will get a file of size 300MB.

• Splitting into file chunks

Once the slave receives the file, it will divide the received file according to
its cores. The slave will now create the threads which will work on the file
chunk size. Basically, the thread will linearly traverse over the file chunk
and find the count of every unique temperature data. At the end thread will
return key-value pair in which temperature data as the key and count of that
data as the value.

Keeping Thread constant

In this case, we have kept the number of threads constant. The number of threads
is kept equal to the number of cores because each core can easily handle each
thread.

Figure 4.4: Thread Count Constant

20

For example, if a mobile phone is quad-core, then four threads will be created
by the program itself. So here in this scenario, the file chunk size will also increase
with the increase in the main file size.

Keeping File Chunk Size constant

In this case, we have kept the size of the file chunk constant.

Figure 4.5: File Chunk Size Constant

As shown in Fig 4.5, a 9MB file is passed to the slave from the master, and the slave
has set up a threshold of 3MB file only, so now the 9MB file will be split into three
files chunk each of 3MB size. In this case, the number of threads will not remain
constant because the number of threads will be the same as the number of chunks
created after splitting the main file. File chunk size can be adjusted according to
our requirements. So the number of threads should also increase with the increase
in primary file size.

4.2 Map Reduce

Map Reduce is one of the application that can be executed based on the master
slave manner. It is also the programming model which is used for processing of
big datasets in a parallel manner and can be executed on the clusters with dis-
tributed algorithms. Map Reduce contains main two functions 1) Map and 2)
Reduce.

21

• Map: The input data is split into smaller sections, and a map function is
individually applied to each section. The map function takes the input data
and generates intermediate key-value pairs by performing operations like
transformation or extraction. This process produces intermediate results.

• Reduce: The reduce function receives the sorted intermediate key-value
pairs from the map functions and performs an operation that aggregates
or summarizes them. It combines the values related to the same key and
generates a collection of final output key-value pairs.

Figure 4.6: Word count using Map reduce [22]

Fig 4.6 shows how the word count application can be executed using word count.
Simply the sentences are agiven as input mapper will tokenize the word and then
found the key value pair as word and count respectively which is supplied to re-
ducer to aggregrate the count of its word and atlast count will be given as output.
There can be simultaneously many map functions running and as map functions
completes its task , intermediate results will be passed to the reduce function to
aggregrate the result and output will be generated. Also there can be multiple
reduce functions running simultaneously.

4.2.1 Map-reduce application on our Master-Slave Architecture

We have implement map-reduce same kind of application on the master slave
architecture with help of the data structure called HashMap. HashMap store data
in the format of key value pair only. The thread will actually do similar task of

22

map operation of extraction and generate HashMap which is intermediate result
of key-value pairs which will be passed to the slave. Slave collect the result from
all the threads created and do the aggregration on the intermediate result similar
like reduce operation. After that again aggregrated intermediate result will be
sent to the master, which will be collecting such results from all the slaves and
aggregrating the results to get the final output. So based on our master slave
architecture map operation is applies at the third layer which is thread which is
actually perform task and two time reduce operation is applies at slave level and
at master level to aggregrate the results and get the final output respectively.

4.3 Chapter Summary

This chapter has discussed bried about the our three tier master-slave architecture
and implementation of map reduce application on the architecture. Next chapter
will give the brief description about the setup of the architecture and implemen-
tation of the three different applications on the master slave architecture.

23

CHAPTER 5

Methodology

5.1 Setup

5.1.1 Hardware Setup

Initially, we collected unused but active mobile phones from our family and friends.
After gathering the mobile phones of different specifications, we rooted the phone
to get access to the terminal emulator of Android OS, which is the flavor of Linux
only. However, we could not access the kernel level due to the system’s restriction
of access to the normal user.

Name of
Mobiles

Processor
Processor
Speed(in
GHz)

Num-
ber
of
cores

RAM
(in
GB)

Stor-
age
(in
GB)

Read
/Write
Speed(in
GHz)

Android
Version

Lenovo
K5

ARM
Cortex
A53 415

1.3 4 2 12 0.677 5.1

Moto G7
Kryo 250
636

1.7 8 4 64 0.933 10

Redmi 5
Cortex
A53

1.8 8 3 32 0.933 8.1

Redmi 5A
Cortex
A53

1.4 4 3 32 0.667 8.1

Table 5.1: Mobile Specifications

We have used around four different smartphones with diverse specifications
regarding the number of cores and CPU speed. Varying RAM storage and dif-
ferent I/O read-write speed can lead to experimenting with various accuracies.

24

Also, phones vary from the older Android version of 5 to the newer version of
10. Table 5.1 displays a detailed description of the smartphones used and their
specifications.

A IoT testbed was developed to collect the data. For this testbed, temperature
sensor DHT11 was used to collect the temperature of the surrounding environ-
ment. DHT11 sensor was connected with the microcontroller Aruino Uno which
supplies the power to the sensor, collectively we called it a single module.

Figure 5.1: IoT testbed

IoT testbed shown in Fig 5.1 was developed by us which comprises of such
three modules to collect the temperature data. A single module was made to
collect data every 0.1 seconds. At the end of six months, around 32 crore samples
were collected which is equivalent make to the 1GB of file size.

5.1.2 Software Setup

We developed an Android-based application based on master-slave using An-
droid Studio, which is compatible with almost all mobile phones having any An-
droid version. The benefit of using this software is that we can easily observe the
CPU utilization and the memory used by the application we developed. Apart
from this, Android Studio also shows the energy consumption by our applica-
tion only for those mobile phones whose API version is greater than 26. There

25

is the inbuilt interface of Android Studio called Profiler, which easily shows the
CPU utilization of a particular application on mobile phones. Also, Arduino IDE
software was used to simulate and program hardware to easily program any mi-
crocontroller available in the IDE list by connecting to a computer. Also, we can
control the data transfer speed from the computer to the microcontroller and vice
versa.

5.2 Experiments Performed

5.2.1 Word Count Application

Figure 5.2: Workflow of mapreduce application

26

Algorithm 1: Word Count master
Input : Text File
Output: Count of every word

// Server class
class Server

// Creating server
Create Hash_Map with key and value Start ServerHelper Thread
Click on Send Button()
text_file= get from local_storage
Divide text_file among clients in buckets according to cores
// ServerHelper class
class ServerHelper extends Thread

Initialize the server socket and start with port number and IP
address

run()
while true do

socket← Accept Client Connections
Add new client into bucket
ClientHandler handler← new Client with socket;
Start a handler for new client
handler.start();

// Handler class
class ClientHandler extends Thread

client= get new client
outputstream=get outputstream from client
inputstream=get inputstream from client
cores= get cores of client
run()
client_hash_map= get from client client_count +=1
if client_count == Bucket.length then

for key in client_hash_map do
value=Hash_Map(key)
if value==null then

Hash_Map.put(key,value)

else
Hash_Map.put(key,value+ client_hash_map(key))

print(Hash_Map)

27

Algorithm 2: Word Count Slave
Input : File chunk
Output: Occurence of every word

// Client class
class Client

Create client_hash_map with key as word and value as count
Click on Connect Button()
Create client socket
Connect client socket with server
ClientHelper.start()
// ClientHelper class
class ClientHelper extends Thread

client_word_file=Get chunk of file from server & store in file.
splitting_file()
Processing_thread[] of size equal to number of cores
client_file_chunks[]=Divide client_word_file into equal chunks
// where number of chunks equal to the number of cores
for i=0 to core do

Processing_thread[i].start(client_file_chunks[i])

for j to cores do
Processing_thread.join();

outputstream.send(client_hash_map)

// Processing class
class Processing_thread extends Thread

find_word_count()
client_word_file_chunk=client_file_chunks
while EOF do

line=get line from client_word_file_chunk
synchronized(lock)
word[]=line.split(" ")
for every w in word do

count = client_hash_map(w);
client_hash_map.put(w,count+1);

28

To check the feasibility of our system we have implemented Word Count prob-
lem which is one of the classic problems that can be solved using the map-reduce(MR)
model. Fig 5.2 shows the workflow of the word count application on the master
slave architecture. A text file is been given as input to the master which is splitted
by the master into small parts and then passed to the slaves according to their
number of cores. The reason for dividing file among slaves according to the num-
ber of cores is proper distribution of computation task among the slaves. Again
slaves will split the files into chunks and will be given to the threads to perform
the word count. The thread will traverse the file line by line in a linear fashion
and split the line based on space as a delimiter. After tokenizing the line into
word, thread will create a data structure called HashMap to store data in key-
value pair, where key will be the word and value will be the count of that word.
While traversing file if same word is encountered by thread, it will increase the
count by 1. The intermediate result of key-value pair will be given to the slave
and it will again aggregrate result into HashMap and same thing will be repeated
by the master which collects the result and aggregates to find the final output as
final count of each unique word.

5.2.2 Average of Temperature data

After checking the feasibility of word count application on master slave, we tried
to implement our architecture to use as an edge architecture where statistical anal-
ysis can be done on the data that is collected from IoT testbed shown in fig 5.1.

Figure 5.3: Hardware Architecture

Fig 5.3 show how the flow of data collected from IoT testbed will be collected
at one device in CSV format and then it will be passed to our architecture for
computation.

29

Algorithm 3: Temperature master [26]
Input : Temperature File
Output: Average of temperature

// Server class
class Server

// Creating server
Create Hash_Map with key and value
Create variable sum,count,average Start ServerHelper Thread
Click on Send Button()
temperature_file= get from local_storage
Divide temperature_file among clients in buckets according to cores
// ServerHelper class
class ServerHelper extends Thread

Initialize the server socket and start with port number and IP
address

run()
while true do

socket← Accept Client Connections
Add new client into bucket
ClientHandler handler← new Client with socket;
Start a handler for new client
handler.start();

// Handler class
class ClientHandler extends Thread

client= get new client
outputstream=get outputstream from client
inputstream=get inputstream from client
cores= get cores of client
run()
client_hash_map= get from client client_count +=1
if client_count == Bucket.length then

for key in client_hash_map do
value=Hash_Map(key)
if value==null then

Hash_Map.put(key,value)

else
Hash_Map.put(key,value+ client_hash_map(key))

for key in Hash_Map do
sum+=(Hash_Map(key)*value)
count+=Hash_Map(key)

average=sum/count
print(average)

30

To begin with experiment to find the average of the temperature data, first of
all CSV file containing sensor data was sent to the master. Then master split the
file among the slaves according to cores similar like the word count application
as discussed in 5.2.1 and again slaves will split file among the threads to count
ocuurences of the temperature data. The thread will traverse the file chunk line
by line in a linear fashion and splits every data by considering the space as a
delimiter. While traversing, it will try to map that data and increase the count of
that data by 1. Once the thread traverses the whole file, it will have the frequency
of every unique temperature data, so now it will return that count to the slave in
the format of key-value pair where the key α will be the data and the value β(α)

will be the count of that temperature data α, equivalent to the MR model’s map
operations.

Slaves will collect such key-value pairs from the threads and aggregate the
count ζi corresponding to the key αi, which is actually the data by traversing over
all keys and all threads which can be given as,

ζi =
N

∑
n=1

β(αi) (5.1)

where N is the total number of threads created by the slave, and i moves from 1
to the total number of unique keys (U).

And then, the master will aggregate every response from the slaves in the same
way. So, we will finally get the count of every unique data from the file, equivalent
to the MR model’s reduced operation. So now the master will have the key αi as
the data and value ρi as the final count of that data by aggregating the value ζi

over every key αi given by thread which can be given as

ρi =
M

∑
n=1

ζi (5.2)

where ρ is the final count of each key α, and M is the total number of slaves and i
moves from 1 to total number of unique keys (U).

To calculate the average avg the total sum is found out by multiplying every
key α which is the temperature data with its count ρ in the entire file and then
dividing with the total number of samples which is equilatent to sum of final

31

Algorithm 4: Temperature Slave with Constant Threads[29]
Input : Temperature File chunk
Output: Count of every temperature

// Client class
class Client

Create client_hash_map with key as word and value as count Click on
Connect Button()

Create client socket
Connect client socket with server
ClientHelper.start()
// ClientHelper class
class ClientHelper extends Thread

client_temperature_file=Get chunk of file from server & store in
file.

splitting_file()
Processing_thread[] of size equal to number of cores
client_file_chunks[]=Divide client_temperature_file into equal
chunks
// where number of chunks equal to the number of cores
for i to cores do

Processing_thread[i].start(client_file_chunks[i])

for j=0 to cores do
Processing_thread.join();

outputstream.send(client_hash_map)

// Processing class
class Processing_thread extends Thread

find_temperature_count()
client_temperature_file_chunk=client_file_chunks
while EOF do

line=get line from client_temperature_file_chunk
synchronized(lock)
count = client_hash_map(line);
client_hash_map.put(line,count+1);

32

count of every α which is given by

avg =
Sum of all samples

Total number of samples
(5.3)

∑U
i=1(keyi × count of keyi)

∑U
i=1 count of keyi

(5.4)

=
∑U

i=1 αi × ρi

∑U
i=1 ρi

(5.5)

where U is the total number of keys.
At the end, master will find the average of the temperature data using the

master slave application. The benefit of our application is that the connection
is wireless, so once a task is given to the master, it can divide among the slaves
who are in the range of its network as we were connected to the Wi-Fi router that
allows a range of 45 meters. As each thread has to traverse over each file

Figure 5.4: Computation time vs Thread Management time

For this experiment, we arbitrarily chose one mobile device as a master and
the rest as slaves. Our main idea was to find out whether smartphones are able
to perform computations. If yes, then what can be the optimal file size? Our hy-
pothesis is whether we can use smartphones as computing devices or not. For
this, we have experimented with different file sizes varying from 2.5MB to 1GB
with different numbers of slaves to observe the behavior of the algorithm on our
master-slave architecture. So, currently, manually, we are providing a file to the
master, but it can be automated to collect data from the sensor directly. For sce-
nario 1 discussed in 4.1.1, a single octa-core phone and a single quad-core phone

33

were used as slaves responding to create 8 and 4 threads, respectively, because
threads will be created equal to the number of cores. So as soon as the file is
received from the master, the slave will store the data from the communication
channel to a file. And then, that file is divided into chunks as per the cores and
provided to the threads, so now the thread will have that chunk and will calculate
the count of each temperature data from that chunk.

Algorithm 5: Temperature Slave File Constant[28]
Input : Temperature File chunk
Output: Count of every temperature

// Client class
class Client

Create client_hash_map with key as word and value as count
Click on Connect Button()
Create client socket
Connect client socket with server
ClientHelper.start()
// ClientHelper class
class ClientHelper extends Thread

client_temperature_file=Get chunk of file from server & store in
file.

splitting_file()
total_chunks=client_temperature_file/fixed file chunk size
client_file_chunks[]=Divide client_temperature_file into equal
fixed file size chunks

Processing_thread[] of size equal to total_chunks
for i=0 to total_chunks do

Processing_thread[i].start(client_file_chunks[i])

for j=0 to total_chunks do
Processing_thread.join();

outputstream.send(client_hash_map)

// Processing class
class Processing_thread extends Thread

find_temperature_count()
client_temperature_file_chunk=client_file_chunks
while EOF do

line=get line from client_temperature_file_chunk
synchronized(lock)
count = client_hash_map(line);
client_hash_map.put(line,count+1);

For scenario 2, to fix the file chunk size, we ran a small experiment for a par-
ticular file size; we divided it into different file chunk sizes and measured the

34

thread management time with the computation time. As shown in 5.4, we ran for
160MB main file size, which was further divided into smaller different file chunk
sizes and we analyzed the percentage difference between time taken for thread
management and time taken for computation out of total time. The optimal an-
swer will be in which thread management time will be the lowest compared to all
others. in our case for 160 MB file size we got the 16MB as ideal because thread
management time is the lowest among all different file chunk sizes, which is 1/10
of 160MB file.

(a) master (b) slave

Figure 5.5: Master Slave Connection

Similarly, we ran the experiment for 320MB, for which we got 32MB as ideal,
so from this, we can take file chunk size as 1/10 of the primary file size. In our
experiment, we are going maximum up to 1GB file size for which we have taken
100MB file size as constant.

In above both experiment, if the algorithm is traversed sequentially then com-
plexity comes out to be O(n) where n is the total samples collected in the file.
Comparatively if same algorithm is executed on master slave architecture which
has two slaves of same cores, then for single slave which is octacore complexity

35

comes out to be O(n/8) because 8 threads will be created which will execute on
the 8 file chunk size of equal size in the parallel manner.

And then, it was performed on the same two mobile phones to record the
performance metrics based on the number of threads created based on file chunk
size. After fixing the file chunk size, when the slave receives the file it will be
divided into chunks of fixed size chunks and again thread will have each chunk
to work upon it to find word count.

The UI part of the master application as well as for the slave is shown in images
shown in Fig 5.5.

5.3 Indoor Localization

A real life application indoor localization was implemented on the master-slave
architecture which actually will locate the location of a person based on the mag-
netic field. Person is told to walk about 1-2 meters and based on the magen-
tic signal collected, it is matched with the magnetic signals that is collected in
the database. Matching with the database signal is done with the Dynamic Time
Warping(DTW) which is discussed later in next chatper.

5.4 Chapter Summary

This chapter builds the foundation of this project, describing the architecture and
its application for using the master-slave kind of architecture. We saw the detailed
working of the algorithm on this architecture.

36

CHAPTER 6

Indoor Localization

6.1 Data Collection

Figure 6.1: User Interface of Usage Tracker

To implement the experiment, we employed the above three mobile phones men-
tioned in Table 5.1 to collect the magnetic field data from the Android-based ap-

37

plication, which was developed in-house to collect sensor data named as Usage
Tracker App whose interface shown in Fig 6.1.

The magnetic field data were collected in the hallways of three floors of the
Laboratory building. Around 200 samples were collected for each floor, out of
which only the X-axis of the magnetic field was considered for our computation.
Likewise, around 4 times, this task was repeated to collect the magnetic signal for
each floor, So at the end, around 12 magnetic signals were collected, 4 signals per
floor.

Figure 6.2: Different Signals

Fig 6.2 show the signal data collected each time or all hallways difference in
every signal is due to walking speed which ranged from 0.98m/s to 1.5m/s. Also,
the different orientation of mobile phones during walking affects the data.

6.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method for comparing and aligning two tem-
poral sequences that may differ in timing or speed. It is frequently used in the
fields of data mining[34], speech recognition[40], and signal processing[13].DTW
tries to achieve a better alignment among the two-time series by compressing or
stretching either of the series. DTW aims to find an optimal alignment between
two sequences, allowing for variations in the timing and speed of the underlying
processes.

38

In general, consider two signals, P = {p1, p2, ..., pA} and Q = {q1, q2, ..., qB}
of different lengths. The goal is to find the best match between the two signals
by some alignment w, the optimal warping path. The warping path is given by
w = w(1), w(2), ..., w(n), where wn = [i(n), j(n)] is the set of matched samples,
where i and j corresponding to the value of two signals respectively. The objective
of the warping function is to minimize the overall cost function given by

Y =
K

∑
n=1

cost(w(n)) (6.1)

where cost(w(n)) is the absolute difference between the sample points given by

cost(w(n)) = abs(i(n)− j(n)) (6.2)

To generate a warping path, a cost 2D matrix is constructed. The cost matrix
represents the minimum cost required to reach a particular point (i, j) from (1, 1).
This minimization problem is usually solved using the dynamic programming
approach, whereby a cumulative distance γ(i, j) is computed as the sum of the
distance obtained from the current set of points (cost(w(n))) and the minimum
cumulative distances of the adjacent elements or neighbors. This is given by

γ(i, j) = cost(w(n)) + min[γ(i− 1, j), γ(i− 1, j− 1), γ(i, j− 1)] (6.3)

After performing time warping closest match between two signals is obtained
by the lowest cumulative distance. The algorithm works by constructing a dis-
tance matrix where each element in the matrix represents the cost of aligning two
specific elements from the sequences. The distance matrix is then populated by
finding the minimum cost path from the starting point to the endpoint. This path
represents the optimal alignment between the two signals.

6.2.1 Sliding Window

As mentioned above, DTW uses dynamic programming to find the cumulative
distance difference between two signals. So for this, each and every point on
the signal is traversed, and the minimum distance is found from each other. In
general, consider two signals, P = {p1, p2, ..., pA} and Q = {q1, q2, ..., qB} where
Q is reference signal from the database, and P is test signal which is to be used
to find the distance from S and also A < B. So to find the DTW distance between
signal P and signal Q, the best idea is to use the sliding window concept. So for

39

that, we will take a window signal δ size of A from signal S and find the DTW
distance.

δ(i) = {qi, ..., qi+A} (6.4)

, where i move from 1 to B− A. After every iteration, a window will slide by one
element till B− A is reached. So now, DTW distance will be given by

D =
B−A
min
n=1

dtw(δ(n), T) (6.5)

Every window will be calculated with the test signal. Then distance will be re-
turned, out of which minimum distance will be extracted, and it can be concluded
that the test signal best fits that window of the reference signal.

6.2.2 Methodology

We have implemented DTW on master-slave with the concept of parallelism.
Though DTW distance is dynamic programming in which tasks are dependent
on each other it is not possible to implement the parallel task to be performed.
One test signal of around 30 samples was collected, and the actual task was to
match with one of the collected 12 magnetic signals Fig6.2.

First of all, the master will have a test signal as well as a database of all signals.
So master will divide the database among the slaves according to the number
of cores. So if one slave is octa-core and another is quadcore then the master will
divide the database in 2:1 respectively. Also master will send the test signal, which
has to be matched with one of the databases signals to every slave.

Now slave will try to divide the task and try to make it parallel by using the
concept of thread. The slave will create threads equal to the number of database
signals that it receives from the master. So each thread will be allocated one
database signal.

The thread will do the actual task of finding the DTW distance between the
database signal and the test signal. After calculating the DTW distance, the win-
dow will slide by one element, and again DTW distance is calculated. The total
number of windows ω for the sliding window protocol can be defined as:

ω = B− A + 1 (6.6)

where B is the total samples of a single database signal and A is the total samples
of the test signal. each window size is equal to the size of the test signal.

40

Algorithm 6: Algorithm for Server to find DTW distance between mag-
netic signals[30]

Input : Database of Signals,Test Magnetic Signal
Output: Minimum DTW distance between Database signal and Test signal

// Server class
class Server

// Creating server
minimum_dtw_distance=MAX Start ServerHelper Thread
Click on Send Button()
test_signal= get from local_storage
db_signals[]=get db signals from local storage
Divide db_signals among clients in buckets according to cores
// ServerHelper class
class ServerHelper extends Thread

Initialize the server socket and start with port number and IP
address

run()
while true do

socket← Accept Client Connections
Add new client into bucket
ClientHandler handler← new Client with socket;
Start a handler for new client
handler.start();

// Handler class
class ClientHandler extends Thread

client= get new client
outputstream=get outputstream from client
inputstream=get inputstream from client
cores= get cores of client
run()
dtw_distance= distance
signal_number=db_signal number from client
client_count +=1
min_DTW_distance= min(min_DTW_distance,dtw_distance)
if client_count == Bucket.length then

print(min_DTW_distance)

41

Algorithm 7: Algorithm for Client to find DTW distance between mag-
netic signals[27]

Input : Few Database Signals, Test Signal
Output: Minimum DTW Distance

// Client class
class Client

Click on Connect Button()
Create client socket
Connect client socket with server
ClientHelper.start()
// ClientHelper class
class ClientHelper extends Thread

test_signal=Get test signal from the server & store in a file
client_db_signals[]=Get each database signal from server & store in
file.

splitting_file()
Processing_thread[]=processing_thread[client_db_signals.length]
from i to client_db_signals.length
Processing_thread[i].start(client_db_signals[i])
from j to client_db_signals.length
Processing_thread.join();
outputstream.send(minimum)

// class
class Processing_thread extends Thread

find_dtw()
n=test_signal.length
m=client_db_signal.length // db signal got from helper class
dtw_matrix[n][n]
for i=0 to m-n do

Set dtw_matrix[][] as max value dtw_matrix[0][0]=0; for j=0 to n
do

for k=0 to n do
dtw_cost=absoulue.(client_db_signal[k+j-1]-
test_signal[i-1])

dtw_matrix[i][j]=dtw_cost+ min(dtw_matrix[i-
1][j],dtw_matrix[i][j-1],dtw_matrix[i-1][j-1])

synchronized(lock)
if dtw_matrix[n][n]<minimum then

minimum=dtw_matrix[n][n];

42

Test Signal Size (A) Total Windows (ω)
10 191

20 181

30 171

40 161

50 151

Table 6.1: Number of windows created with different test signal sizes

Table 6.1 shows the total no of windows created with different no of samples
in test signal where size of database signal (B) is 200 samples which is same.

Here, each thread will work on equation 6.5, where each thread will find the D.
Therefore slave will find the minimum distance based on DTW distance received
from the threads. Thus it can be given as follows.

slave_DTW = min{D1, D2, ..., Dn} (6.7)

where n= number of threads created by the slave.
This is the minimum result returned by the slave to the master will again find

the minimum DTW distance from the slaves which can given as

master_DTW = min{slave_DTW1, slave_DTW2, ..., slave_DTWm} (6.8)

where m= number of slaves. And at the end, we will get the minimum DTW
distance matching signal with one of the database signals. Based on this, we can
decide the location of the person in the indoor environment.

6.3 Chapter Summary

This chapter will discuss about the brief description of implementation of indoor
localization application on the master-slave architecture. The next chapter will
see the specific factors’ performance analysis and experimental results from the
experiment performed.

43

CHAPTER 7

Performance Evaluation

This chapter will discuss the observation and analysis of the metrics based on the
experiment performed.

7.1 Word Count and Average of Temperature Data

7.1.1 Scenario1-Thread count constant

We have performed this experiment on different mobiles with different cores as
we have kept the thread count = number of cores.

Figure 7.1: Case 1: CPU utilization with increasing file sizes

From the 7.1, we can easily observe that CPU utilization remains almost sim-
ilar though there is an increase in the size of the file. This is because every time,
the same number of threads will only be created, whatever will be the file size.

44

7.1.2 Scenario2- File chunk size constant

We observed that the number of threads increases with the primary file size in-
crease as the file chunk size remains constant at 100MB so that when the file size
increases and it is divided in to file chunk size of 100MB, which increases the
number of threads that will work on the file chunk size created. Fig 7.2 shows the
number of threads with increased file size for octa-core and quadcore. Similarly,

Figure 7.2: No of threads with increasing file sizes

Fig 7.3 shows the CPU utilization of mobile phones the application uses for octa-
core and quad-core. Comparing both results in Fig, we can easily see that CPU
utilization also increases as the number of threads increases. For quad-core, when
a single thread is created, CPU utilization comes out to be 1/4, which is equiva-
lent to 25%. Similarly, for octa-core single thread gives the CPU utilization = 1/8,
equivalent to 12.5%. Although only 4 threads are created for the file size of 1.3 GB,
it is higher CPU utilization because, for quad-core, four threads are the threshold,
while even six threads are created for octa-core, which is less than the threshold
of eight threads.

45

Figure 7.3: Case 2: CPU utilization with increasing file sizes

7.1.3 Comparison with Desktop

Apart from this experiment, we also performed the word count program on the
Hadoop cluster using map-reduce, which was already set up on a desktop with
a single master and two slaves. The table shows the specification of the desktop
Table 7.1.

Desktop Mobile

CPU speed 3.2 GHz 1.6 GHz 2X

RAM Read- write speed 19.2 Gb/s 3.2 Gb/s 6X

Bandwidth 10 MBps 1 MBps 10X

OS Linux Android

Disk I/O 165.77 Mb/s 6.5 Mb/s 25X

Table 7.1: Comparison of Desktop with mobile

Fig 7.4 shows the computation time comparison between the Hadoop and An-
droid clusters. The time for the Android cluster is almost square times the time
taken by the Hadoop cluster. The reason behind such results can easily be ob-
served from the table, which tells that desktop is much faster than mobile phones.
Again everything comes with pros and cons within itself. Many such factors can

46

Figure 7.4: Time comparison of mobile with desktop

be taken into consideration, which are mentioned below.

• Cost:- The cost for the desktop/server is very much higher than the mo-
bile phones. This assertion is based on the understanding that desktop
computers generally have larger storage capacity and more advanced hard-
ware components than mobile devices, which makes them more expensive
to manufacture and purchase.

• Carbon Emission:- According to a study by [8], the total carbon footprint
of a mobile device is typically lower than that of a desktop computer. The
study found that the total carbon footprint of a mobile device (including
manufacturing, usage, and end-of-life disposal) is 80% less than the carbon
footprint of the desktop.

• Battery Power:- Desktop computers tend to consume more energy than mo-
bile devices due to their larger size, more advanced hardware, and tendency
to stay plugged in for longer. According to a study [32], the average power
consumption of a desktop computer is almost 50% more than the average
power consumption than mobile device.

47

7.2 Dynamic Time Warping

DTW is a computation-intensive program with a dynamic programming concept
that traverses and puts values by calculating DTW distance in the 2D matrix. In
addition to this, a sliding window concept is used so only a small window size
equal to a smaller signal is taken, and DTW distance is found out, and every time
a window will slide by one element after calculating for a particular window.

7.2.1 Time Comparison with single device

We have implemented a DTW algorithm on ms architecture as well as on a single
device for comparing the algorithm’s behavior. In single-device computation, for
every single signal, total windows are calculated. And for every window, the 2D
matrix is calculated based on the equation6.3. So complexity is O(kωn2) where k
is no of total database signals, ω is total windows, and n2 is the matrix size.

We have experimented with different numbers of database signals and ana-
lyzed the behavior from Fig 7.5, 7.6, 7.7, 7.8, 7.9 that almost DTW on master-slave
is almost 50% faster than the single device when the no of samples increases. But
there is not much difference in computation time for fewer samples. But when the
number of samples increases, master-slave increases linearly while single device
computation increases nearly equal to exponential. To work with more number
of signals we replicated the same signals twice to get 24 signals, similarly thrice to
get 36 signals. The reason for increasing number of signals to observe the behavior
as well as CPU utilization of DTW algorithm respectively.

Figure 7.5: Time comparison with a single device for 12 database signals

48

Figure 7.6: Time comparison with a single device for 24 database signals

Figure 7.7: Time comparison with a single device for 36 database signals

49

Figure 7.8: Time comparison with a single device for 48 database signals

Figure 7.9: Time comparison with a single device for 60 database signals

7.2.2 CPU utilization

Our aim was to use the mobile phone’s cores which were kept idle, so to measure
this metric, we can have the CPU utilization, which says how much CPU is used
for running the algorithm and that can be measured from the Android Studio

50

Profiler only. From fig 7.10, we can easily observe that CPU is almost utilized
between 80% to 95%.

Figure 7.10: CPU utilization for DTW

At the same time, single device/on-device computation remains almost the
same every time, with an increase in the number of samples due to only one
thread being created for computation. In contrast, for master-slave, the slave will
create threads equal to the number of database signals received from the master.

7.3 Chapter Summary

This chapter had discussed different metrics based on the experiment performed
for different scenarios and applications. Apart from this also, we have compared
the map-reduce task of wordcount on mobile and PC and DTW for MS and sin-
gle device. The next chapter discusses the conclusions and future scope of the
research work that can be carried out.

51

CHAPTER 8

Conclusion and Future Work

8.1 Conclusion

This thesis presents a three-tier architecture based on master-slave and the con-
cept of parallelism using thread. Using master-slave architecture, computation is
distributed over the devices while using threads; processing can be done in paral-
lel, which saves computation time. Two applications:- word count and DTW, were
executed on this MS architecture. A detailed description of how both applications
are implemented on the MS architecture. Then a comparison of algorithms with
metrics like CPU utilization, the computation time for octa cores and quad cores
devices, and single device computation. Although both applications are different,
word count is more I/O based and less computation. At the same time, DTW is
a computation-intensive application in which a matrix is traversed to find the op-
timal DTW distance between two signals. For DTW, MS application is 50% faster
than the single device and almost utilizes 7.5 times more CPU than single device.

8.2 Future Scope

To extend the work, master-slave architecture can be used for different applica-
tions. As this project can be improved by adding some functionalities. We can de-
velop better code designs that reduce data transfer latency from master to slave.
Especially for DTW, we can add the classifying the window to locate exact place
for indoor localization. Also, it be useful as multiple users can access it at a time.
Also, develop the user interface that shows the navigation for further destinations
on the phone.

52

References

[1] Green grid data center power efficiency metrics: Pue and dcie [online]. 2008.

[2] Map your meal europe aid funded project. [online]. 2016.

[3] Delloite,https://www.business-standard.com/article/current-
affairs/india, 2017.

[4] D. B. Abdullah and M. M. Al-Hafidh. Developing parallel application on
multi-core mobile phone. International Journal of Advanced Computer Science
and Applications, 4(11), 2013.

[5] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus
ipc: The end of the road for conventional microarchitectures. 28(2):248–259,
may 2000.

[6] B. Alessio, W. De Donato, V. Persico, and A. Pescapé. On the integration of
cloud computing and internet of things. Proc. Future internet of things and
cloud (FiCloud), pages 23–30, 2014.

[7] O. Alzakholi, H. Shukur, R. Zebari, S. Abas, M. Sadeeq, et al. Comparison
among cloud technologies and cloud performance. Journal of Applied Science
and Technology Trends, 1(2):40–47, 2020.

[8] A. Andrae and O. Andersen. Life cycle assessment of consumer electronics -
are they consistent? The International Journal of Life Cycle Assessment, 15:827–
836, 07 2010.

[9] Apple. Apple website retrieved from https://nanoreview.net/en/soc/apple-
a15-bionic.

[10] Apple. Mike Elgan. 2017. With smartphones like these,
why do we need laptops? Retrieved from https://www.
computerworld.com/article/3241233/with-smartphones-like-these-why-
do-we-need-laptops.html. .

53

[11] Apple. Samuel Axon. 2021. iPhone 13 and 13 Pro review: If
you could have three wishes. Retrieved from https://arstechnica.
com/gadgets/2021/09/iphone-13-and-13-pro-review-if-you-could-have-
three-wishes/.

[12] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan, and
S. V. Krishnamurthy. Cwc: A distributed computing infrastructure using
smartphones. IEEE Transactions on Mobile Computing, 14(8):1587–1600, 2015.

[13] V. K. Bhardwaj and S. Maini. Measurement of micro-harmonic vibration fre-
quency from the modulated self-mixed interferometric signal using dynamic
time warping method. Mechanical Systems and Signal Processing, 168:108712,
2022.

[14] R. Bongiovanni and J. Lowenberg-DeBoer. Precision agriculture, 5:359–387,
2004.

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in
the internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pages 13–16, 2012.

[16] F. Büsching, S. Schildt, and L. Wolf. Droidcluster: Towards smartphone
cluster computing–the streets are paved with potential computer clusters.
In 2012 32nd International Conference on Distributed Computing Systems Work-
shops, pages 114–117. IEEE, 2012.

[17] F. Büsching, S. Schildt, and L. Wolf. Droidcluster: Towards smartphone clus-
ter computing - the streets are paved with potential computer clusters. 06
2012.

[18] K. Cao, Y. Liu, G. Meng, and Q. Sun. An overview on edge computing re-
search. IEEE access, 8:85714–85728, 2020.

[19] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya,
L. Gauthier, and M. Diaz-Nava. Multiprocessor soc platforms: a component-
based design approach. IEEE Design & Test of Computers, 19(6):52–63, 2002.

[20] CISCO. https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html. , 2018.

[21] M. O. DairyMaster. http://www.dairymaster.com/heat-detection/. 2016.

54

[22] N. ECSU/IU. Admi workshop,http://admicloud.github.io/www/wordcount.html,
year = 2016.

[23] J. Garcia Almiñana, E. Simo, X. Masip, E. Marin-Tordera, and S. Sanchez-
Lopez. Do we really need cloud? estimating the fog computing capacities in
the city of barcelona. pages 290–295, 12 2018.

[24] Geekbench_11. John Poole. 2021. Introducing Geekbench 5. Retrieved from
https://www.geekbench.com/ .

[25] S. George, T. Eiszler, R. Iyengar, H. Turki, Z. Feng, J. Wang, P. Pillai, and
M. Satyanarayanan. Openrtist: end-to-end benchmarking for edge comput-
ing. IEEE Pervasive Computing, 19(4):10–18, 2020.

[26] GitHub. https://github.com/vyom18/server_for_temperature.

[27] GitHub. https://github.com/vyom18/slave_dtw.

[28] GitHub. https://github.com/vyom18/temperature_slave_fileconstant.

[29] GitHub. https://github.com/vyom18/temperature_slave_threadconstant.

[30] GitHubLink. https://github.com/vyom18/master_for_dtw.

[31] Herdwatch.[Online]. 2016.

[32] Z. hu and J. Ruutu. Comparison of energy consumption between a mobile
device and a collection of dedicated devices. pages 1–6, 05 2011.

[33] Intel. https://ark.intel.com/content/www/us/en/ark/products/series/88393/6th-
generation-intel-core-i5-processors.html. .

[34] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamin-
ing applications. In Proceedings of the Sixth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’00, page 285–289, New
York, NY, USA, 2000. Association for Computing Machinery.

[35] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong,
A. Wanichsombat, and P. Nillaor. Computers and electronics in agriculture,
156:467–474, 2019.

[36] T. Nam and T. A. Pardo. Conceptualizing smart city with dimensions of tech-
nology, people, and institutions. In Proceedings of the 12th annual international
digital government research conference: digital government innovation in challeng-
ing times, pages 282–291, 2011.

55

[37] F. G. . F. [Online]. 2016.

[38] S. Patel, K. Sasidhar, M. Vaghela, P. Katrodia, and R. Wagani. An m-health
app that goes beyond screen time applications. In 2022 IEEE 10th Region 10
Humanitarian Technology Conference (R10-HTC), pages 94–99, 2022.

[39] S. Patel, K. Sasidhar, M. Vaghela, P. Katrodia, and R. Wagani. An m-health
app that goes beyond screen time applications. In 2022 IEEE 10th Region 10
Humanitarian Technology Conference (R10-HTC), pages 94–99, 2022.

[40] Y. Permanasari, E. H. Harahap, and E. P. Ali. Speech recognition us-
ing dynamic time warping (dtw). Journal of Physics: Conference Series,
1366(1):012091, nov 2019.

[41] QUALCOMM. https://arstechnica.com/gadgets/2019/02/qualcomm-is-
already-announcing-next-years-5g-chips. , 2019.

[42] M. Raihan, S. Mondal, A. More, M. O. F. Sagor, G. Sikder, M. A. Majumder,
M. A. Al Manjur, and K. Ghosh. Smartphone based ischemic heart disease
(heart attack) risk prediction using clinical data and data mining approaches,
a prototype design. In 2016 19th International Conference on Computer and In-
formation Technology (ICCIT), pages 299–303, 2016.

[43] A. P. Rajan et al. Evolution of cloud storage as cloud computing infrastruc-
ture service. arXiv preprint arXiv:1308.1303, 2013.

[44] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and M. Valero.
Supercomputing with commodity cpus: Are mobile socs ready for hpc? In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’13, New York, NY, USA, 2013. Association
for Computing Machinery.

[45] B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud comput-
ing systems. In 2009 Fifth international joint conference on INC, IMS and IDC,
pages 44–51. Ieee, 2009.

[46] C. A. Ronao and S.-B. Cho. Human activity recognition with smartphone
sensors using deep learning neural networks. 59(C):235–244, oct 2016.

[47] B. Schaffner, J. Sawin, and J. Myre. Smartphones as alternative cloud com-
puting engines: Benefits and trade-offs. pages 244–250, 08 2018.

56

[48] B. Schaffner, J. Sawin, and J. M. Myre. Smartphones as alternative cloud com-
puting engines: Benefits and trade-offs. In 2018 IEEE 6th International Confer-
ence on Future Internet of Things and Cloud (FiCloud), pages 244–250, 2018.

[49] B. Schaffner, J. Sawin, and J. M. Myre. Smartphones as alternative cloud com-
puting engines: Benefits and trade-offs. In 2018 IEEE 6th International Confer-
ence on Future Internet of Things and Cloud (FiCloud), pages 244–250, 2018.

[50] C. L. Seitz et al. System timing. Introduction to VLSI systems, pages 218–262,
1980.

[51] A. W. services website. https://aws.amazon.com/getting-
started/projects/host-net-web-app/services-costs/. .

[52] M. P. Singh and M. K. Jain. Evolution of processor architecture in mobile
phones. International Journal of Computer Applications, 90(4):34–39, 2014.

[53] J. Switzer, G. Marcano, R. Kastner, and P. Pannuto. Junkyard computing:
Repurposing discarded smartphones to minimize carbon. New York, NY,
USA, 2023. Association for Computing Machinery.

[54] J. Switzer, G. Marcano, R. Kastner, and P. Pannuto. Junkyard computing:
Repurposing discarded smartphones to minimize carbon. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 400–412, 2023.

[55] E. topics blog. https://explodingtopics.com/blog/smartphone-stats. , 2019.

[56] M. Vaghela, K. Sasidhar, A. Parikh, and R. Wagani. Assessing mobile usage,
physical activity and sleep through smartphone sensing: A digital pheno-
type study. SN Computer Science, 3, 06 2022.

[57] M. D. Ventra and Y. V. Pershin. The parallel approach. Nature Physics, 9:200
– 202, 2013.

[58] D. Yates and M. Islam. Readiness of smartphones for data collection and data
mining with an example application in mental health. 10 2019.

57

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Organization of Thesis
	Overview of Edge Computing
	Evolution of Smartphones
	State of the art of Computational power (Server)
	Issues and Challenges in Server
	Phone as a Computing Platform (PaaP)
	Why Smartphones are advantageous ?
	Motivation
	Problem Statement
	Chapter Summary

	The Rise of Smartphones
	Are smartphones nearing the processing speed capabilities of PCs?
	Improvements in the hardware of smartphones(SoC)
	Improvements in Processor Clock Speed
	Need of more number of cores

	Improvements in Random-access Memory(RAM)
	Chapter Summary

	Literature Survey
	Chapter Summary

	Proposed Architecture
	Master Slave Paradigm
	Our System Architecture

	Map Reduce
	Map-reduce application on our Master-Slave Architecture

	Chapter Summary

	Methodology
	Setup
	Hardware Setup
	Software Setup

	Experiments Performed
	Word Count Application
	Average of Temperature data

	Indoor Localization
	Chapter Summary

	Indoor Localization
	Data Collection
	Dynamic Time Warping
	Sliding Window
	Methodology

	Chapter Summary

	Performance Evaluation
	Word Count and Average of Temperature Data
	Scenario1-Thread count constant
	Scenario2- File chunk size constant
	Comparison with Desktop

	Dynamic Time Warping
	Time Comparison with single device
	CPU utilization

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Scope

	References

