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Abstract

The facial image of a person contains much rich information like gender, race,
age, hairstyle, and other essential pieces of information that are related to a per-
son’s occupation. Predicting or recognizing occupation is a classification problem.
Because of its wide reach in intelligent systems and services, this is a feasible com-
puter vision challenge.

In this thesis, we have stated a related work that includes the different studies
on this topic. The previous study was done based on recognizing occupation from
human clothing, scene context, social context, and a facial image of a person. My
thesis objective is to predict occupation from a facial image of a human.

We have collected data on Indian people and made a new dataset. In this
work, we have used two different datasets. The first dataset, DB1, is used in pre-
vious studies as well, which is based on eastern Asian people. The second dataset
is based on Indian people, which is made by us. Both the dataset contains five
different classes. We have used multiple image classification algorithms and com-
pared them in terms of accuracy and performance. Out of all of these algorithms
that we have used, The vision transformer performs best as compared to other
algorithms. Also, the vision transformer achieves better accuracy as compared to
all other previous works, which is based on occupation prediction from the facial
image.

Keywords : Occupation prediction, image classification
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CHAPTER 1

Introduction

In this chapter, we have briefly discussed the introduction of the entire research
work. This chapter describes the objective of the thesis and the motivation behind
the thesis. We have also mentioned contribution and thesis organization.

1.1 Thesis Objective

The main goal of my work is to predict occupation from the facial image of a
person. It is a classification problem in which we classify the facial image based
on occupation. In this work, we are using the supervised learning method to train
a model, in which we train a model with a facial image that is associated with a
label. After the training, a model takes a new test image, and based on previous
data; our model predicts the occupation.

In this thesis work, we have implemented various image classification algo-
rithms and did a comparative analysis. We have also gathered the data of Indian
people and made an Indian dataset that contains facial images and occupations
associated with it. Thus we have drawn our conclusions based on various exper-
iments on different algorithms.

1.2 Thesis Motivation

The research based on retrieving face attributes is widely popular. From the face
of the person, we can derive very important characteristics like age, gender, eth-
nicity, personality, etc. This face information is beneficial in intelligent systems
and services. These face attributes are very useful in recommendation and se-
curity. For example, face recognition is useful in biometrics and security. These
attributes are also used in surveillance. Age, ethnicity, gender, personality, etc.
Data is essential for a variety of real-world applications, such as, identity veri-
fication, video surveillance, human-computer interaction, biometrics, electronic
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customers, online advertising, crowd analysis, and item suggestion, among oth-
ers.

Our research involves determining a person’s occupation based on a single
face image. Because of its immense potential in intelligent systems, occupation
prediction from pictures is a significant topic in the computer vision field.

The previous studies on occupation prediction is mainly based on human
clothing, social contexts, and scene contexts. In those studies, they predict occu-
pation based on which dress people wear, background image of a person, social
interaction, or where people work. In this work, our approach is to predict the
occupation from the single facial image of a person. Although predicting em-
ployment only based on facial features may appear counterintuitive at first, but
it is a realistic goal that may complement existing clothing and context-based ap-
proaches.

Examples of facial images are shown in figure 3.1 of professors, athletes &
anchorpersons. From those images, we can easily observe that athletes be younger
persons, anchorpersons primarily female and young, and professors tend to be
older.

There are many other facial features like glasses-wearing, skin color, hairstyle,
gender, age, etc. can be a facial features for predicting an occupation from facial
images. We come to the conclusion that a profession may be thought of as a com-
bined distribution of a collection of facial characteristics, and that a computational
model to predict occupation from facial pictures can be developed.

1.3 Contributions

The thesis contributions include the following:

• In this work, we have gathered the data and made a new dataset that is
based on the Indian people. Because in previous studies, they have used a
dataset that contains eastern Asian people’s facial images.

• We have implemented multiple image classification algorithms on two dif-
ferent datasets and did comparative studies based on the result that we got
from the experiments.

• We have also made a demo website based on the flask to showcase the oc-
cupation prediction from the facial image.

2



1.4 Thesis Organization

The rest of this thesis work includes the following :
The second chapter is about related work, which includes all previous stud-

ies that are related to occupation prediction. The third chapter is regarding the
dataset which was used in this work. The fourth chapter is about experiments
that we have conducted for this work. The fifth chapter contains the results of
our experiments and analysis. The sixth contains possible applications and chal-
lenges of this defination. At last seventh chapter describes the Conclusion and
Future Work.
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CHAPTER 2

Related Work

In this chapter, we have described various previous studies which are related to
occupation prediction. Here we have mentioned an introduction regarding stud-
ies, an overview of previous studies, and at the end summary of related work.

2.1 Introduction

There are many studies published that are based on retrieving different face at-
tributes from facial images. These types of studies are widely popular. Our study
is also based on retrieving face attribute. We are predicting occupation from the
facial appearance of a person.

The occupation prediction is a classification problem. In this classification
problem, an image of a person is classified into different classes. The various
features are used for predicting the occupation, i.e., Appearance.

2.2 Human clothing and context

The part-based modeling was proposed by Song et al. [13]. This was first work
on occupation prediction. They use part-based modeling to predict occupation
by looking at the head, upper body and left as well as right shoulders. The head
of a person has many features like hat style, hairstyle, gender, age, etc. are re-
lated to the profession. In the central upper body, clothing style and uniform is
an important feature for occupation prediction. At last, left and right shoulders
express many essential details about human dressing, like the design of sleeves,
after detecting all four human body parts. In order to generate semantic level
representation, low-level characteristics with sparse coding are used. It delivers
good accuracy by integrating clothing and context information. The framework
for predicting occupation from clothing and context information is shows good
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performance. The framework for predicting occupation from clothing features
and context features from the scene is shown in Fig. 2.1

Figure 2.1: Prediction from Human clothing and scene context. [13]. ©[2011]
IEEE. with Permission for reprint from, from Z. Song, Meng Wang, Xian-sheng
Hua and S. Yan, "Predicting occupation via human clothing and contexts,"
2011 International Conference on Computer Vision, 2011, pp. 1084-1091, doi:
10.1109/ICCV.2011.6126355.

2.3 Occupation via social context

M. Shao [12] proposed a method for predicting numerous people’s occupations in
arbitrary postures while taking into account their social context. In this work, they
detect human body parts in random poses and also consider the visual appear-
ance and social context to extract features and train a model by using a structure
SVM.

2.4 Occupation prediction by using face & body

Wei-Ta et al. in [4] By incorporating face and body context information, a method
for predicting occupation from photos was presented. The framework for this
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work that contains four different components: first, Data preprocessing, feature
extractions, DMC-SVM, and prediction fusion. In preprocessing, the image is di-
vided into two parts, facial part and body part. The top part of the head, the
middle upper body, and the left and right arm are the four components divided
from the body.

Features will be retrieved from three viewpoints after preprocessing: lower
level features, higher level features, and deep features. These extracted attributes
are fed into the multi-channel SVM framework is used for classification. To fur-
ther consider inter-class and intra-class variation, they proposed discriminant
multi-channel SVM. The fusion component will combine the outcomes from DMC-
SVM based lower level and higher level attributes. And it gives the output by
using output of fusion and output of DMC-SVM from viewpoint of deep feature.

2.5 Occupation from a single facial image

Wei-Ta chu in [3] proposed an approach of predicting occupation from a single
photograph of a person’s face. In this work, they first extracted features from
an image and then fed it to the model. For feature extraction, they first used 64
x 64 images, and that parallel with recognized eye which are fixed at a certain
position. After that, all photos were subjected to intensity histogram equalisation
to eliminate the effects of lighting variations. Then dense SIFT descriptors [11] are
extracted, which is 128 dimensional.

These descriptors are transformed into LLC code[14] which is of 1024 dimen-
sional code. For extracting features from multiple scales, the spatial pyramid
scheme [10] was used. Total 21 pyramid grids are constructed. From all these
pyramid grids, LLC codes were extracted. In the end, a feature vector of 21 x 1024
= 21504 dimensions is extracted for all facial images.

These features are used to predict occupation. To integrate those features,
they have used a multi-feature support vector machine framework [2] which is
focused on the boosting method was used to build the support vector machine
model. Further, they proposed a model of discriminant multi-feature SVM. Those
features are given to discriminant multi-feature support vector machine to predict
occupation from facial image. This model also considers inter-class and intra-class
variation. This proposed solution in this study gives a good performance.
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2.6 Summary

From all these previous works, we can say that most of the studies in the past
are mostly based on appearance. This means they predict the occupation from
human clothing, scene context, and social context. And two paper was published
which is based on the predicting occupation from a facial image by only one set
of authors. So this is a significantly less explored field in the computer vision
domain.
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CHAPTER 3

Dataset

In this chapter, we have briefly discussed the dataset. In this work, we have used
two datasets. The first one is the DB1 dataset which is based on eastern Asian
people, and the second dataset, which is based on the Indian dataset.

3.1 DB1 dataset

Figure 3.1: Sample image of DB1 dataset and their average faces. [3]. ©[2014]
IEEE with permission for reprint from, W. -T. Chu and C. -H. Chiu, "Predicting
Occupation from Single Facial Images," 2014 IEEE International Symposium on
Multimedia, 2014, pp. 9-12, doi: 10.1109/ISM.2014.13.

For occupation prediction, the dataset was taken from [4]. This dataset was
created and used by Wei-ta chu et al. in [3] and [4]. This dataset contains a total of
2062 facial images. These images are distributed among five different classes an-
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chorperson, doctor, professor, athlete, and policeman. All categories have 300 to
500 images. Among those images, some of the images from all classes are chosen
randomly for evaluation, where the all other photos for training purpose. In this
dataset, all images are of size 64 x 64 pixels, and all pictures are parallel with eyes
at certain location that have been recognised. After collecting all images, they
extracted images that belonged to only eastern Asian people only.

3.2 Indian dataset

We have also built a dataset for this thesis. Only photos of Indian individuals are
included in this dataset. There are 1000 facial photos in this dataset. These pho-
tographs are divided into five categories: anchorperson, doctor, farmer, professor,
and athlete. There are 200 photographs in each of these classes. We preprocessed
the images after gathering them and created an Indian facial image dataset. All
of these images are of size 64 x 64 pixels after preprocessing. These photographs
were gathered from the internet.

We also have circulated a Google Form to gather the data from our networks,
friends, families, and social media. But we have a lesser number of responses than
we expected. The sample images shown below are collected from a google form.
And also, we have taken the consent of the owner of the image to use them.

Figure 3.2: Sample image of professors from indian dataset.
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CHAPTER 4

Experiments

4.1 Introduction

This chapter is all about the experiments that we have conducted for this work. In
this experiment, we implemented various image classification algorithms on two
datasets: DB1 and the Indian dataset. We have implemented a support vector
machine, logistic regression, AdaBoost, bagging, and vision transformer. Also,
we have discussed the feature extraction method that we have used in the first
four algorithms to extract the features from facial images.

4.2 Feature Extraction

For extracting the features from the facial image, we have used the Spatial pyra-
mid pooling method[9], which is shown in figure 4.1. The Spatial pyramid pool-
ing method extracts the deep learning features from the multiple scales of the
image. In this work, we have extracted features from 3 levels.

For the first level, from the entire image, we extract the features. The image
is divided into four different non-overlapping subregions on the second level.
And from all four subregions, we extract the features. And at the third level,
the entire image is divided into sixteen different non-overlapping sub-regions.
And from all these regions, we extract the features. In the end, all features from
21 parts are concatenated. From all parts of the images at multiple levels, we
extract a 256-dimensional feature vector. So from all images we extract 21 x 256
= 5376 dimensional feature vector. The features are used as input to the various
algorithms to train a model. So this spatial pyramid pooling method extracts
robust features from the image.
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Figure 4.1: Architecture of Spatial pyramid pooling. ©[2015] IEEE. Reprinted,
with permission, from K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Recognition," in IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904-1916,
1 Sept. 2015, doi: 10.1109/TPAMI.2015.2389824.

4.3 Support vector machine

The SVM [5] is a discriminative model which maximizes the discrimination among
the classes. This algorithm is used for both the regression as well as classification
applications. It is a one of the supervised machine learning algorithm. The goal of
the SVM technique is to evaluate the best line or decision boundaries for grouping
n-dimensional space into categories such that t he following data points can easily
be assigned to the appropriate category.

The best decision boundary is referred to as a hyperplane. The extreme points
that help construct the hyperplane are chosen using a support vector machine.
The technique is known as a Support vector machine, and these support vectors
are extreme instances. For multiclass classification, we have used the one vs. rest
method in SVM. In this, we split the multiclass dataset into multiple binary classi-
fication problems. In SVM, we used features that were extracted from the spatial
pyramid and trained the model. This model gives better performance and pre-
dicts more accurately as compared to random guesses.
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4.4 Logistic regression

The logistic regression [6] is a supervised algorithm. Here we used multiclass re-
gression for classification. Generally, logistic regression is used for binary classifi-
cation. But for multiclass classification here, we used the one Vs. rest algorithm.
In this technique, we select one class and group the remaining classes into a sec-
ond virtual class and then run binary classification. In this method, we divide two
classes by linear line. We have used extracted features from the spatial pyramid
as input to the model.

4.5 Ensemble Learning

Multiple weak learners are used and trained in ensemble learning methods to
make strong classifiers. In this method, we use base learners or weak learners,
which are any classifier, such as a decision tree, a support vector machine, a lo-
gistic regression, a naive Bayes, and so on. In this work, we have used a support
vector machine as a base learner or weak learner. In this work, we have used two
ensemble learning methods: Adaboost and Bagging.

4.5.1 Adaboost

The Adaboost[8] is an ensemble learning technique, which is also known as the
meta-learning technique. It is a boosting technique. We use multiple weak learn-
ers. Although a single classifier may not reliably forecast an image’s class, we
may develop a robust model by combining multiple weak classifiers, each learn-
ing from the others’ incorrectly categorized items. Based on the weighted sam-
ples, a weak classifier is built on top of the training data. The weights of every
sample show how critical it is to be categorized accurately.

For the very first base learner, we assign all of the samples the same weight.
The current base learner is trained on the data. After training, it calculates the
error while training. Based on the error, it updates the weight of the classifier and
the weight of the images. If any image is classified incorrectly, then the weights
of that image will increase. And if any image is classified correctly, the weight
of that image will decrease. Based on these classifier weights and image weights
next base learner will train and try to minimize the error. This process is kept on
until maximum iteration is reached. In Adaboost, we first extract deep learning
features from the spatial pyramid, which is discussed above. These features are
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used to train a classifier.

4.5.2 Bagging

Bootstrap aggregation is another name for bagging[1]. It’s an ensemble learning
approach that helps machine learning algorithms increase their performance and
accuracy. This method can be used to solve both regression and classification
challenges. In this method, multiple base learner is used for training on a subset
of the dataset in parallel and independently.

In this method, the first stage was bootstrapping. In this stage, the specific
number of equal sizes of datasets was extracted from the original dataset with re-
placements. This specific number is equal to the number of base or weak learners.
In this, we use replacements, some records used in multiple base learners. After
training the classifier, the test data is given to all base learners, and these base
learners predict output independently. We collect all results from all base learners
and based on voting, and it provides the final outcome. which is called aggre-
gation. In this work, we first extract features from the spatial pyramid, which is
used to train the classifier.

4.6 Vision transformer

The Vision transformer [7] is one of the most popular algorithms in the area of
Deep learning. This algorithm is based on the transformer, which is used in the
natural language processing task. In NLP, the internally transformer learns by
measuring the relationship between the token pairs. Whereas in Vision trans-
former, it is a measured relationship between the pair of patches. Here all patches
of the image consider a token. The relationship will be learned by applying the
attention mechanism in the network. The architecture shown in figure 4.2.

Here we gave raw images as input to the model. Then this model divides the
entire image into fixed size patches. In this work size of the patch is 16 x 16, which
are nonoverlapping patches. These patches are then flattened and given as input
to the linear projection layer, which creates lower dimensional linear embedding
from these flattened patches. After that, we include positional embedding. This
positional embedding is used to retain positional information of the patches in
the image. After adding positional embedding, provide input as a vector to the
transformer encoder layer.

A multi-head self-attention layer, multi-layer perceptrons layer, and nomaliz-
ing layer make up the transformer encoder. These multi-head attention layers are
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Figure 4.2: Architecture of Vision transformer. [7]. Reprinted, with permission,
from A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N.
Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. CoRR, abs/2010.11929, 2020

used to find the relationship between pairs of patches. The MLP layer is the stan-
dard feedforward layer. The normalization layer is added to prior to each block.
It helps in improving training time and overall performance. After the multiple
encoder block, the MLP head will attach at position 0. We added class embed-
ding, an extra learnable token at position 0 used for classification. At the MLP
head, which is attached at position 0, we get the final output of the input image.

The Vision transformer will not work well if you directly train the model on
your custom dataset. So, we have to train the vision transformer model on a
very large dataset with a high-resolution dataset. Here we have used the ViT B16
model of the vision transformer, which is pretrained on the imagenet 21K dataset,
which contains more than 10 million images and 21 thousand classes. This model
we have used to train on our custom dataset to improve the model’s performance.

14



CHAPTER 5

Results and Analysis

In this chapter, we have described the results. These results are from the exper-
iments that we have conducted. We show the result table of the model and its
accuracy. Also, show and analyze the confusion matrix and outputs of the results.

5.1 Results

We have used two datasets. The DB1 dataset was used in [3] and [4] Previous
studies and the Indian dataset which is made by us. The table shows the accuracy
of different models. The highest accuracy of occupation prediction from the facial
image in the previous study was 77.50% in Discriminant multi-channel support
vector machine(DMC-SVM).

Table 5.1: Results of Our Experiments

Results table of classification accuracy (%). The models with higher accuracies
than the baseline are represented in bold.

Sr. No. Model DB1 Indian

1 SVM 73.6% 74.4%

2 Logistic Regression 72.8% 74.8%

3 Adaboost 72.4% 77%

4 Bagging 75.8% 73.8%

5 ViT 83.6% 83.8%

If we randomly guess the occupation from the five classes, then the probabil-
ity of getting the right answer is 1/5 means 20% only. Whereas from the table, we
can see that all models in both datasets achieved very high accuracy as compared
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to random guesses. In previous studies, the highest accuracy on occupation pre-
diction from the facial image was 77.50% on the DB1 dataset, and if we compare
with our results, then the vision transformer(ViT) gives the best results on both
the DB1 and Indian datasets. So, the vision transformer shows an improvement
from the previous work on the DB1 dataset.

From the result table, we can see that only Bagging shows a better result on
the DB1 dataset as compared to the Indian dataset. Whereas SVM, logistic re-
gression, AdaBoost, and vision transformer perform well on the Indian dataset as
compared to the DB1 dataset. Here Vision Transformer achieved 83.6% accuracy
on the DB1 dataset, and it achieved 83.8% accuracy on the Indian dataset, Which
is the best accuracy among all other image classification algorithms.

5.2 Confusion Matrix

Figure 5.1: Confusion matrix for DB1 dataset on vision transformer model.

The confusion matrix of the vision transformer for the DB1 dataset is shown
in Figure 5.1. In the DB1 dataset, the name of classes is Professor, Doctor, Ath-
lete, Police, and Anchor. From the confusion matrix, we can see that the highest
accuracy is achieved by athlete class, in which the least misclassification has hap-
pened. This is only because of their uniqueness in age and gender. Because most
probably, The athletes are younger and male.
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Figure 5.2: Confusion matrix for Indian dataset on vision transformer model.

The anchor also has higher accuracy and lesser misclassification rate as com-
pared to the professor, doctor, and police. Because most probably, the anchor is
primarily a female and young. So anchor has some uniqueness in gender and age.

From the figure 5.1, we can see that the professor and doctor have the least
accuracy and higher misclassification rate. The police class is more confused with
the professor and doctor class. Same way professor’s class is also confused with
the doctor and police class. Because the police, doctor, and professor classes have
some similar characteristics. For example, similarity in age. So from this confu-
sion matrix on the DB1 dataset, the anchor and athlete classes have the least, and
the police class has a higher misclassification rate.

Figure 5.2 shows the confusion matrix of the vision transformer for the Indian
dataset. In the Indian dataset, the name of classes is professor, athlete, farmer,
anchor, and doctor. From the above confusion matrix, we can see that the highest
accuracy was achieved by the farmer, and it has the least misclassification has
happened because of uniqueness in the age. Most probably, the farmer is old
people.

Here Athlete and Anchor also achieved more accuracy and lesser misclassifi-
cation rate as compared to the doctor and professor. Because of uniqueness in age
and gender, as discussed above.

The professor and doctor classes have the least accuracy and higher misclas-
sification rate. We can see that the professor class has higher confusion with the
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(a) Raw Input Image (b) Final Output

Figure 5.3: Professor correctly classified as Professor

doctor and the doctor class have higher confusion with the professor class. This is
because of some similarities in characteristics, for example, age. So in the Indian
dataset, the farmer has the highest accuracy and lowest misclassification. At the
same time, the professor and doctor classes have higher misclassification.

5.3 Outputs

In this section, we have shown the input image and output of that image. Here,
the first three pairs of images, Figures 5.3, 5.4, and 5.5, belong to the professor,
and the fourth pair of images, figure 5.5, belong to the farmer. All outputs are
predicted by the vision transformer model.

From the output images, we can see that in the first two images, figures 5.3
and 5.4, The input images belong to the professor class, and the model is correctly
classified as a professor. Whereas in figure 5.5, the input image belongs to the
professor’s class, but the image was misclassified as an anchor. And at last, figure
5.6, which belongs to the farmer class and is correctly classified as a farmer.
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(a) Raw Input Image (b) Final Output

Figure 5.4: Professor correctly classified as Professor

(a) Raw Input Image (b) Final Output

Figure 5.5: Professor wrongly classified as Anchor

(a) Raw Input Image (b) Final Output

Figure 5.6: Farmer correctly classified as Farmer
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CHAPTER 6

Applications and Challenges

In this section, we briefly discussed the application and challenges we faced dur-
ing the study. In the application section, we have discussed all possible applica-
tions of the occupation prediction from the person’s facial image. In the second
section, we have discussed the challenges that we have faced during the research
work.

6.1 Applications

In this section, we are going to discuss possible applications of occupation predic-
tion from the facial image of a person. The occupation prediction can be used in
various fields like e-commerce, recommendation system, etc.

If we can predict occupation from the facial image, then it is very beneficial in
e-commerce to recommend specific products. This recommendation will be based
on the occupation. Because in some occupations, the person needs some products
that are used frequently. By using this occupation prediction, we can recommend
an appropriate product. which is very beneficial for the business. Also, we can
use occupation prediction in advertisements. This application is very useful for
targeting a specific audience by showing ads for a certain product. So this occu-
pation prediction can be used for marketing as well. And it is advantageous for
businesses.

Another application of this work can be used in social media. There are many
social media and community websites. In this type of web application, we can
suggest friends, groups, and pages by using occupation prediction. Because on
this type of platform, there are many groups and pages which are directly related
to the profession. Also, we can suggest friends based on the profession. So, the
occupation can be used on social media platforms as well.
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6.2 Challenges

This section has discussed various challenges that we have faced while conduct-
ing this work. One of the challenges is about the related work. In previous studies,
a very less amount of work was done on occupation prediction from facial images
of the person. Most of the studies are based on appearance like human clothing,
scene context, social context, etc. So one of the challenges is previous research
related to this definition is very limited.

In occupation prediction from the facial image, the first task is to select the
classes. This means selecting the occupation and number of occupations that we
have to predict. There are many occupations, but we have selected some common
occupations: doctor, actor, athlete, professor, and farmer.

After selecting the occupation, the next big challenge is to gather data. In this
data, we need a facial image of a person and his occupation. Also, we need the
consent of the person to use their facial image and data for this work. Many
people are not willing to give their data, and some people do not give their facial
images because of the privacy issue. We have tried to gather the data from various
websites like Linkedin, emails, WhatsApp, and from our networks and request to
give the data. We have circulated the google form on the above channels so people
can give the data.

The other challenge is that predicting occupation from the facial image is one
of the difficult tasks. In this definition, we do not get very high accuracy. And if
we increase the number of classes, then the accuracy will also decrease. So these
are the challenges of this work.
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CHAPTER 7

Conclusion and Future work

In this chapter, we have included a conclusion that is derived from our work. And
also included potential future work.

7.1 Conclusion

The occupation prediction from the facial image of a person is a very inspiring
problem to solve. This work doesn’t receive much attention in this field. Many
rich facial features like gender, age, hairstyle, etc., are related to occupation. Those
facial features are advantageous to predicting occupation from a facial image of
a person. In this work, we have implemented various image classification algo-
rithms. We also created our own dataset that is based on Indian people. From all
experiments, we can say that the vision transformer gives the best performance
on both datasets. Vision transformer also shows improvement as compared to
previous studies.

7.2 Future Work

As part of future work, we can expand our custom Indian dataset. We can add
more images per class. So there can be a chance of an increase in the accuracy
and performance of the model. Also, we can add more classes. So that model can
predict more number of occupations. We can make multiple datasets that belong
to different nationalities and can find patterns. By using these types of different
datasets, we can also compare them.
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CHAPTER A

Source code

A.1 Preprocessing of collected dataset

###################################################################

’’’

I am Darshankumar Zalavadiya , M.Tech (ICT) student at Dhirubhai

Ambani Institute of Information and Communication Technology.

My M.Tech Thesis supervisor is Prof. Manish Gupta , DA-IICT.

This source code is the part of my M.Tech thesis.

In this code , we have used the following libraries:

- OpenCV: Available at: https :// opencv.org/

- OS: Available at: https :// docs.python.org/3/library/os.html

The source code also available at :

https :// github.com/darshan154/occupation -prediction

’’’

###################################################################

# This code preprocesses the collected dataset and generates

# an output dataset with facial images.

# All input images must be arranged classwise in the folder.

import cv2

import os

root_path = "Path of dataset"

save_path = "Path of output folder"

imagePath = root_path

for img_class in os.listdir(root_path):
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cnt=0

save_path_file=os.path.join(save_path ,img_class)

try:

os.mkdir(save_path_file)

except OSError as error:

print(error)

for img in os.listdir(os.path.join(root_path ,img_class)):

path_=os.path.join(root_path ,img_class ,img)

image = cv2.imread(path_)

gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "

haarcascade_frontalface_default

.xml")

faces = faceCascade.detectMultiScale(

gray ,

scaleFactor=1.3,

minNeighbors=3,

minSize=(30, 30)

)

for (x, y, w, h) in faces:

roi_color = image[y:y + h, x:x + w]

roi_color = cv2.resize(roi_color , (64, 64))

filename=img_class + ’_’ + str(cnt) + ’.jpg’

cv2.imwrite(os.path.join(save_path_file ,filename),

roi_color)

status = cv2.imwrite(’faces_detected.jpg’, image)

cnt+=1

A.2 Vision Transformer

###################################################################

’’’

I am Darshankumar Zalavadiya , M.Tech (ICT) student at Dhirubhai

Ambani Institute of Information and Communication Technology.

My M.Tech Thesis supervisor is Prof. Manish Gupta , DA-IICT.

This source code is the part of my M.Tech thesis.
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In this code , we have used the following libraries:

- OpenCV: Available at: https :// opencv.org/

- OS: Available at: https :// docs.python.org/3/library/os.html

- matplotlib: Available at: https :// matplotlib.org/

- numpy: Available at: https :// numpy.org/

- pathlib: Available at: https :// docs.python.org/3/library/pathlib.

html

- torch: Available at: http :// torch.ch/

- glob: Available at: https :// docs.python.org/3/library/glob.html

- pytorch lightning: Available at: https ://www.pytorchlightning.ai/

- torchvision: Available at: https :// pytorch.org/vision/stable/

index.html

- transformer: Available at: https :// huggingface.co/docs/

transformers/index

- tensorflow: Available at: https :// www.tensorflow.org/

- sklearn: Available at: https :// scikit -learn.org/stable/

- seaborn: Available at: https :// seaborn.pydata.org/

- datasets: Available at: https :// huggingface.co/docs/datasets/index

- keras: Available at: https :// keras.io/

- scikitplot: Available at: https :// scikit -plot.readthedocs.io/en/

stable/index.html

The source code also available at :

https :// github.com/darshan154/occupation -prediction

’’’

###################################################################

!pip install transformers pytorch-lightning

!sudo apt -qq install git-lfs

!pip install transformers "datasets >=1.17.0" tensorboard --upgrade

import math

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image , UnidentifiedImageError

from pathlib import Path

import torch

import glob

import pytorch_lightning as pl

from torch.utils.data import DataLoader

from torchvision.datasets import ImageFolder

from torchmetrics import Accuracy

from transformers import ViTFeatureExtractor ,

ViTForImageClassification ,
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TFViTForImageClassification ,

create_optimizer ,

DefaultDataCollator

from pytorch_lightning.callbacks import ModelCheckpoint

import matplotlib.pyplot as plt

import random

import cv2

import os

import tensorflow as tf

from sklearn.metrics import confusion_matrix , classification_report

import seaborn as sns

!pip install datasets

# download dataset

!git clone https:// github.com/darshan154/db2.git

import datasets

def create_image_folder_dataset(root_path):

""" creates ‘Dataset ‘ from image folder structure """

# get class names by folders names

_CLASS_NAMES = os.listdir(root_path)

# defines ‘datasets ‘ features ‘

features=datasets.Features({

"img": datasets.Image(),

"label": datasets.features.ClassLabel(names=

_CLASS_NAMES

),

})

# temp list holding datapoints for creation

img_data_files=[]

label_data_files=[]

# load images into list for creation

for img_class in os.listdir(root_path):

for img in os.listdir(os.path.join(root_path ,img_class)):

path_=os.path.join(root_path ,img_class ,img)

img_data_files.append(path_)

label_data_files.append(img_class)

# create dataset

ds = datasets.Dataset.from_dict({"img":img_data_files ,"label":

label_data_files},features=

features)

return ds

28



# path to dataset

occupation_ds = create_image_folder_dataset("./db2/data")

occupation_ds

class_labels = occupation_ds.features["label"].names

id_model = "google/vit -base -patch16 -224"

from tensorflow.keras import layers

feature_extractor = ViTFeatureExtractor.from_pretrained(model_id)

def process(examples):

examples.update(feature_extractor(examples[’img’], ))

return examples

occupation_ds = occupation_ds.rename_column("label", "labels")

processed_dataset = occupation_ds.map(process , batched=True)

% processed_dataset

test_size=.30

processed_dataset = processed_dataset.shuffle ().train_test_split(

test_size=test_size)

id_2_label = {str(i): label for i, label in enumerate(class_labels)}

label_2_id = {v: k for k, v in id_2_label.items ()}

train_epochs = 7

training_batch_size = 64

evaluation_batch_size = 64

learning_rate = 1e-4

decay=0.4

warmup_steps=0

output_dir=id_model.split("/")[1]

collator = DefaultDataCollator(return_tensors="tf")

train_dataset = processed_dataset["train"].to_tf_dataset(

columns=[’pixel_values ’],

label_cols=["labels"],

shuffle=True ,

batch_size=training_batch_size ,

collate_fn=collator)
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eval_dataset = processed_dataset["test"].to_tf_dataset(

columns=[’pixel_values ’],

label_cols=["labels"],

shuffle=False ,

batch_size=evaluation_batch_size ,

collate_fn=collator)

train_steps = len(train_dataset) * train_epochs

optimizer , lr_schedule = create_optimizer(

init_lr=learning_rate ,

num_train_steps=train_steps ,

weight_decay_rate=decay ,

num_warmup_steps=warmup_steps ,

)

model = TFViTForImageClassification.from_pretrained(

id_model ,

num_labels=len(class_labels),

ignore_mismatched_sizes=True ,

id2label=id_2_label ,

label2id=label_2_id ,

)

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

metrics=[

tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),

tf.keras.metrics.SparseTopKCategoricalAccuracy(3, name="top -3-

accuracy"),

]

model.compile(optimizer=optimizer ,

loss=loss ,

metrics=metrics

)

from tensorflow.keras.callbacks import TensorBoard as

TensorboardCallback , EarlyStopping

callbacks=[]

callbacks.append(TensorboardCallback(log_dir=os.path.join(output_dir

,"logs")))

callbacks.append(EarlyStopping(monitor="val_accuracy",patience=3))

res = model.fit(
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train_dataset ,

validation_data=eval_dataset ,

callbacks=callbacks ,

epochs=train_epochs ,

)

lbls = []

for i in range(len(id_2_label)):

lbls.append(id_2_label[str(i)])

ypred = model.predict(eval_dataset)

ypred = ypred.logits.argmax(-1)

true_categories = tf.concat([y for x, y in eval_dataset], axis=0)

true_categories = np.array(true_categories)

ypred = ypred.reshape (( ypred.shape[0], 1))

true_categories = true_categories.reshape (( true_categories.shape[0],

1))

print("Accuracy:",metrics.accuracy_score(true_categories , ypred))

ax = plt.subplot ()

confusionmatrix = confusion_matrix(true_categories , ypred , normalize

=’true’)

sns.heatmap(confusionmatrix , cmap = ’Blues’, annot = True , cbar =

True , ax = ax)

ax.xaxis.set_ticklabels(lbls)

ax.yaxis.set_ticklabels(lbls)

A.3 Support vector machine

###################################################################

’’’

I am Darshankumar Zalavadiya , M.Tech (ICT) student at Dhirubhai

Ambani Institute of Information and Communication Technology.

My M.Tech Thesis supervisor is Prof. Manish Gupta , DA-IICT.

This source code is the part of my M.Tech thesis.

In this code , we have used the following libraries:

- OpenCV: Available at: https :// opencv.org/

- OS: Available at: https :// docs.python.org/3/library/os.html

- math: Available at: https :// docs.python.org/3/library/math.html

- matplotlib: Available at: https :// matplotlib.org/
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- numpy: Available at: https :// numpy.org/

- glob: Available at: https :// docs.python.org/3/library/glob.html

- tensorflow: Available at: https :// www.tensorflow.org/

- sklearn: Available at: https :// scikit -learn.org/stable/

- seaborn: Available at: https :// seaborn.pydata.org/

- keras: Available at: https :// keras.io/

- random: Available at: https :// docs.python.org/3/library/random.

html

- scikitplot: Available at: https :// scikit -plot.readthedocs.io/en/

stable/index.html

The source code also available at :

https :// github.com/darshan154/occupation -prediction

’’’

###################################################################

# download dataset

!git clone https:// github.com/darshan154/data.git

from tensorflow.keras.preprocessing.image import img_to_array

from keras.applications.vgg16 import VGG16

from keras.models import Model

from keras.layers import Dense , MaxPooling2D , Flatten

import math

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

import random

import cv2

import os

import glob

train_file = []

for filename in glob.glob(r"./data/occ240/occupation/train/" + "

/**/*", recursive=True):

train_file.append(filename)

test_file = []

for filename in glob.glob(r"./data/occ240/occupation/test/" + "/**/*

", recursive=True):

test_file.append(filename)

random.shuffle(train_file)

random.shuffle(test_file)

print(len(train_file))
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label = {"doctor":0, "news":1, "player":2, "police":3, "teachers": 4

}

trainx = []

testx = []

trainy = []

testy = []

for img in train_file:

try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

trainx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

trainy.append([l]) # [[1], [0], [0], ...]

except:

print("Corrupt")

for img in test_file:

try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

testx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

# trainy.append ([l])

testy.append([l]) # [[1], [0], [0], ...]

except:

print("Corrupt")

trainx = np.array(trainx , dtype="float")/255.0

testx = np.array(testx , dtype="float")/255.0

# load model without classifier layers
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base_model = VGG16(include_top=False , weights=’imagenet ’,

input_shape=(64 , 64, 3))

win1 = math.ceil(16/1)

str1 = math.floor(16/1)

win2 = math.ceil(16/2)

str2 = math.floor(16/2)

win3 = math.ceil(16/4)

str3 = math.floor(16/4)

l1 = MaxPooling2D(pool_size=(win1), strides=str1 , padding="valid")(

base_model.layers[-10].output)

l2 = MaxPooling2D(pool_size=(win2), strides=str2 , padding="valid")(

base_model.layers[-10].output)

l3 = MaxPooling2D(pool_size=(win3), strides=str3 , padding="valid")(

base_model.layers[-10].output)

flat1 = Flatten ()(l1)

flat2 = Flatten ()(l2)

flat3 = Flatten ()(l3)

for layer in base_model.layers:

layer.trainable = False

model = Model(inputs=base_model.inputs , outputs=[flat1 , flat2 , flat3

])

trainy = np.array(trainy)

testy = np.array(testy)

train = model.predict(trainx)

test = model.predict(testx)

train = np.hstack([train[0], train[1], train[2]])

test = np.hstack([test[0], test[1], test[2]])

from sklearn.svm import SVC

clf=SVC(probability=True , kernel="linear")

clfmodel = clf.fit(train , trainy)

y_pred = clfmodel.predict(test)

!pip install scikit-plot

from sklearn.metrics import confusion_matrix

import scikitplot as skplt

skplt.metrics.plot_confusion_matrix(testy , y_pred , normalize=True)
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plt.show()

A.4 Logistic Regression

###################################################################

’’’

I am Darshankumar Zalavadiya , M.Tech (ICT) student at Dhirubhai

Ambani Institute of Information and Communication Technology.

My M.Tech Thesis supervisor is Prof. Manish Gupta , DA-IICT.

This source code is the part of my M.Tech thesis.

In this code , we have used the following libraries:

- OpenCV: Available at: https :// opencv.org/

- OS: Available at: https :// docs.python.org/3/library/os.html

- math: Available at: https :// docs.python.org/3/library/math.html

- matplotlib: Available at: https :// matplotlib.org/

- numpy: Available at: https :// numpy.org/

- glob: Available at: https :// docs.python.org/3/library/glob.html

- tensorflow: Available at: https :// www.tensorflow.org/

- sklearn: Available at: https :// scikit -learn.org/stable/

- seaborn: Available at: https :// seaborn.pydata.org/

- keras: Available at: https :// keras.io/

- random: Available at: https :// docs.python.org/3/library/random.

html

- scikitplot: Available at: https :// scikit -plot.readthedocs.io/en/

stable/index.html

The source code also available at :

https :// github.com/darshan154/occupation -prediction

’’’

###################################################################

#download dataset

!git clone https:// github.com/darshan154/data.git

from tensorflow.keras.preprocessing.image import img_to_array

from keras.applications.vgg16 import VGG16

from keras.models import Model

from keras.layers import Dense , MaxPooling2D , Flatten

import math

from PIL import Image

import matplotlib.pyplot as plt
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import numpy as np

import random

import cv2

import os

import glob

train_file = []

for filename in glob.glob(r"./data/occ240/occupation/train/" + "

/**/*", recursive=True):

train_file.append(filename)

test_file = []

for filename in glob.glob(r"./data/occ240/occupation/test/" + "/**/*

", recursive=True):

test_file.append(filename)

random.shuffle(train_file)

random.shuffle(test_file)

label = {"doctor":0, "news":1, "player":2, "police":3, "teachers": 4

}

trainx = []

testx = []

trainy = []

testy = []

for img in train_file:

try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

trainx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

trainy.append([l]) # [[1], [0], [0], ...]

except:

print("Corrupt")

for img in test_file:

try:
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image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

testx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

# trainy.append ([l])

testy.append([l]) # [[1], [0], [0], ...]

except:

print("Corrupt")

trainx = np.array(trainx , dtype="float")/255.0

testx = np.array(testx , dtype="float")/255.0

trainy = np.array(trainy)

testy = np.array(testy)

base_model = VGG16(include_top=False , weights=’imagenet ’,

input_shape=(64 , 64, 3))

win1 = math.ceil(16/1)

str1 = math.floor(16/1)

win2 = math.ceil(16/2)

str2 = math.floor(16/2)

win3 = math.ceil(16/4)

str3 = math.floor(16/4)

l1 = MaxPooling2D(pool_size=(win1), strides=str1 , padding="valid")(

base_model.layers[-10].output)

l2 = MaxPooling2D(pool_size=(win2), strides=str2 , padding="valid")(

base_model.layers[-10].output)

l3 = MaxPooling2D(pool_size=(win3), strides=str3 , padding="valid")(

base_model.layers[-10].output)

flat1 = Flatten ()(l1)

flat2 = Flatten ()(l2)

flat3 = Flatten ()(l3)

for layer in base_model.layers:

layer.trainable = False
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model = Model(inputs=base_model.inputs , outputs=[flat1 , flat2 , flat3

])

train = model.predict(trainx)

test = model.predict(testx)

train = np.hstack([train[0], train[1], train[2]])

test = np.hstack([test[0], test[1], test[2]])

from sklearn.linear_model import LogisticRegression

clf=LogisticRegression ()

clfmodel = clf.fit(train , trainy)

y_pred = clfmodel.predict(test)

!pip install scikit-plot

from sklearn.metrics import confusion_matrix

import scikitplot as skplt

skplt.metrics.plot_confusion_matrix(testy , y_pred , normalize=True)

plt.show()

A.5 Adaboost

###################################################################

’’’

I am Darshankumar Zalavadiya , M.Tech (ICT) student at Dhirubhai

Ambani Institute of Information and Communication Technology.

My M.Tech Thesis supervisor is Prof. Manish Gupta , DA-IICT.

This source code is the part of my M.Tech thesis.

In this code , we have used the following libraries:

- OpenCV: Available at: https :// opencv.org/

- OS: Available at: https :// docs.python.org/3/library/os.html

- math: Available at: https :// docs.python.org/3/library/math.html

- matplotlib: Available at: https :// matplotlib.org/

- numpy: Available at: https :// numpy.org/

- glob: Available at: https :// docs.python.org/3/library/glob.html

- tensorflow: Available at: https :// www.tensorflow.org/

- sklearn: Available at: https :// scikit -learn.org/stable/

- seaborn: Available at: https :// seaborn.pydata.org/

- keras: Available at: https :// keras.io/

- random: Available at: https :// docs.python.org/3/library/random.

html
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- scikitplot: Available at: https :// scikit -plot.readthedocs.io/en/

stable/index.html

The source code also available at :

https :// github.com/darshan154/occupation -prediction

’’’

###################################################################

# download dataset

!git clone https:// github.com/darshan154/data.git

from tensorflow.keras.preprocessing.image import img_to_array

from keras.applications.vgg16 import VGG16

from keras.models import Model

from keras.layers import Dense , MaxPooling2D , Flatten

import math

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

import random

import cv2

import os

import glob

train_file = []

for filename in glob.glob(r"./data/occ240/occupation/train/" + "

/**/*", recursive=True):

train_file.append(filename)

test_file = []

for filename in glob.glob(r"./data/occ240/occupation/test/" + "/**/*

", recursive=True):

test_file.append(filename)

random.shuffle(train_file)

random.shuffle(test_file)

label = {"doctor":0, "news":1, "player":2, "police":3, "teachers": 4

}

trainx = []

testx = []

trainy = []

testy = []

for img in train_file:
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try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

trainx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

trainy.append([l]) # [[1], [0], [0], ...]

except:

print("Corrupt")

for img in test_file:

try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

testx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

# trainy.append ([l])

testy.append([l]) # [[1], [0], [0], ...]

except:

print("Corrupt")

trainx = np.array(trainx , dtype="float")/255.0

testx = np.array(testx , dtype="float")/255.0

trainy = np.array(trainy)

testy = np.array(testy)

base_model = VGG16(include_top=False , weights=’imagenet ’,

input_shape=(64 , 64, 3))

win1 = math.ceil(16/1)

str1 = math.floor(16/1)

win2 = math.ceil(16/2)

str2 = math.floor(16/2)
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win3 = math.ceil(16/4)

str3 = math.floor(16/4)

l1 = MaxPooling2D(pool_size=(win1), strides=str1 , padding="valid")(

base_model.layers[-10].output)

l2 = MaxPooling2D(pool_size=(win2), strides=str2 , padding="valid")(

base_model.layers[-10].output)

l3 = MaxPooling2D(pool_size=(win3), strides=str3 , padding="valid")(

base_model.layers[-10].output)

flat1 = Flatten ()(l1)

flat2 = Flatten ()(l2)

flat3 = Flatten ()(l3)

for layer in base_model.layers:

layer.trainable = False

model = Model(inputs=base_model.inputs , outputs=[flat1 , flat2 , flat3

])

from sklearn.ensemble import AdaBoostClassifier

from sklearn.svm import SVC

svc=SVC(probability=True , kernel="linear")

clf = AdaBoostClassifier(n_estimators=21 , base_estimator=svc ,

learning_rate=0.5, algorithm=’

SAMME.R’)

train = model.predict(trainx)

test = model.predict(testx)

train = np.hstack([train[0], train[1], train[2]])

test = np.hstack([test[0], test[1], test[2]])

clfmodel = clf.fit(train , trainy)

y_pred = clfmodel.predict(test)

!pip install scikit-plot

import scikitplot as skplt

skplt.metrics.plot_confusion_matrix(testy , y_pred , normalize=True)

plt.show()

A.6 Bagging

###################################################################
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’’’

I am Darshankumar Zalavadiya , M.Tech (ICT) student at Dhirubhai

Ambani Institute of Information and Communication Technology.

My M.Tech Thesis supervisor is Prof. Manish Gupta , DA-IICT.

This source code is the part of my M.Tech thesis.

In this code , we have used the following libraries:

- OpenCV: Available at: https :// opencv.org/

- OS: Available at: https :// docs.python.org/3/library/os.html

- math: Available at: https :// docs.python.org/3/library/math.html

- matplotlib: Available at: https :// matplotlib.org/

- numpy: Available at: https :// numpy.org/

- glob: Available at: https :// docs.python.org/3/library/glob.html

- tensorflow: Available at: https :// www.tensorflow.org/

- sklearn: Available at: https :// scikit -learn.org/stable/

- seaborn: Available at: https :// seaborn.pydata.org/

- keras: Available at: https :// keras.io/

- random: Available at: https :// docs.python.org/3/library/random.

html

- scikitplot: Available at: https :// scikit -plot.readthedocs.io/en/

stable/index.html

The source code also available at :

https :// github.com/darshan154/occupation -prediction

’’’

###################################################################

!git clone https:// github.com/darshan154/data.git

from tensorflow.keras.preprocessing.image import img_to_array

from keras.applications.vgg16 import VGG16

from keras.models import Model

from keras.layers import Dense , MaxPooling2D , Flatten

import math

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

import random

import cv2

import os

import glob

train_file = []

for filename in glob.glob(r"./data/occ240/occupation/train/" + "

/**/*", recursive=True):
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train_file.append(filename)

test_file = []

for filename in glob.glob(r"./data/occ240/occupation/test/" + "/**/*

", recursive=True):

test_file.append(filename)

random.shuffle(train_file)

random.shuffle(test_file)

label = {"doctor":0, "news":1, "player":2, "police":3, "teachers": 4

}

trainx = []

testx = []

trainy = []

testy = []

for img in train_file:

try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

trainx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

trainy.append([l]) # [[1], [0], [0], ...]

except:

print("a")

for img in test_file:

try:

image = cv2.imread(img)

image = cv2.resize(image , (64, 64))

image = img_to_array(image)

testx.append(image)

lbl = img.split(os.path.sep)[-2]

l = label[lbl]

# trainy.append ([l])
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testy.append([l]) # [[1], [0], [0], ...]

except:

print("b")

trainx = np.array(trainx , dtype="float")/255.0

testx = np.array(testx , dtype="float")/255.0

trainy = np.array(trainy)

testy = np.array(testy)

base_model = VGG16(include_top=False , weights=’imagenet ’,

input_shape=(64 , 64, 3))

win1 = math.ceil(16/1)

str1 = math.floor(16/1)

win2 = math.ceil(16/2)

str2 = math.floor(16/2)

win3 = math.ceil(16/4)

str3 = math.floor(16/4)

l1 = MaxPooling2D(pool_size=(win1), strides=str1 , padding="valid")(

base_model.layers[-12].output)

l2 = MaxPooling2D(pool_size=(win2), strides=str2 , padding="valid")(

base_model.layers[-12].output)

l3 = MaxPooling2D(pool_size=(win3), strides=str3 , padding="valid")(

base_model.layers[-12].output)

flat1 = Flatten ()(l1)

flat2 = Flatten ()(l2)

flat3 = Flatten ()(l3)

for layer in base_model.layers:

layer.trainable = False

model = Model(inputs=base_model.inputs , outputs=[flat1 , flat2 , flat3

])

from sklearn.ensemble import BaggingClassifier

from sklearn.svm import SVC

svc=SVC(probability=True , kernel="linear")

clf = BaggingClassifier(base_estimator=svc , n_estimators=21)

a = model.predict(trainx)

b = model.predict(testx)
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a = np.hstack([a[0], a[1], a[2]])

b = np.hstack([b[0], b[1], b[2]])

clfmodel = clf.fit(a, trainy)

y_pred = clfmodel.predict(b)

print("Accuracy:",metrics.accuracy_score(testy , y_pred))

!pip install scikit-plot

import scikitplot as skplt

skplt.metrics.plot_confusion_matrix(testy , y_pred , normalize=True)

plt.show()
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CHAPTER B

Google Form

Figure B.1: Snap shot for Title and Introduction of Google form.

Figure B.2: Snap shot1 for information field of Google form.
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Figure B.3: Snap shot2 for information field of Google form.

Figure B.4: Snap shot3 for information field of Google form.
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Figure B.5: Snap shot4 for information field of Google form.

Figure B.6: Google form Consent snap shot.
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Figure B.7: Snap shot 1 for responses of Google form.

Figure B.8: Snap shot 2 for responses of Google form.
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CHAPTER C

System outputs

Figure C.1: Occupation Prediction demo using flask

Figure C.2: Demonstration of the system.
Occupation Prediction from the face. Here we give professor’s image as input.
The right side’s picture shows the predicted occupation of the input image. Here
professor correctly classified as professor.
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Figure C.3: QR Code for Github repository.
URL: https://github.com/darshan154/occupation-prediction

51

https://github.com/darshan154/occupation-prediction

	Abstract
	List of Tables
	List of Figures
	Introduction
	Thesis Objective
	Thesis Motivation
	Contributions
	Thesis Organization

	Related Work
	Introduction
	Human clothing and context
	Occupation via social context
	Occupation prediction by using face & body
	Occupation from a single facial image
	Summary

	Dataset
	DB1 dataset
	Indian dataset

	Experiments
	Introduction
	Feature Extraction
	Support vector machine
	Logistic regression
	Ensemble Learning
	Adaboost
	Bagging

	Vision transformer

	Results and Analysis
	Results
	Confusion Matrix
	Outputs

	Applications and Challenges
	Applications
	Challenges

	Conclusion and Future work
	Conclusion
	Future Work

	References
	Appendix Source code
	Preprocessing of collected dataset
	Vision Transformer
	Support vector machine
	Logistic Regression
	Adaboost
	Bagging

	Appendix Google Form
	Appendix System outputs

