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Abstract

Machine translation from one language to another is a complex problem in ma-
chine learning and one in which the machine still cannot achieve satisfactory re-
sults. The recent focus for solving this challenge has been on neural machine
translation (NMT) techniques, by using architectures such as recurrent neural net-
work (RNN) and long term short memory (LSTM). But the architecture of trans-
former is able to outperform these NMT techniques. The architecture of the trans-
former has been successfully utilized to build models that target a single language
pair translation or translation among multiple languages. But it currently lacks re-
search in the area of translation of multilingual sentences, where each sentence is
in the form of a mixture of languages. In this work we will establish a model
based on the transformer architecture that can translate multilingual sentences
into a single language, with the help of a multilingual neural machine translation
(MNMT) model and custom made datasets.
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CHAPTER 1

Introduction

The task of machine translation was originally performed using techniques that
involved dictionary matching [23]. Then the approach was changed into a more
rule oriented manner. In the past few decades most translations models were
based upon the statistical machine translation approach [14]. In this type of model,
the translation process depends on units such as phrases and sentences. Group of
one or more words constitute a phrase. The goal of these models is to estimate the
probability of translation for a pair of phrases. But the pairs consist of one phrase
from one language and the other phrase from another language. In an SMT model
the process of pairing the correct pair and predicting the correct pair is very hard
as the probability of these phrases occurring in the training data is less. Increasing
the size of the training data provided better results, but they were still not satisfac-
tory. Hence this creates a requirement of alternatives for the purpose of machine
translation.

Recently organizations like Google and Bing have shifted their focus in the
research for translation towards NMT. The memory requirement of these NMT
models is only a fraction of that of the more conventional SMT models. To maxi-
mize the translation performance every part of the NMT model is trained in a joint
manner as compared to the more conventional translation systems [27]. Problems
such as machine translation fall under the category of sequential modeling and
transduction problems. Many solidly formed approaches using RNN [19], LSTM
[10] and gated recurrent neural networks [5] already exist.

These models are recurrent in nature and generally consider the positions of
symbols that exist both in the input sequences and the output sequences. Hid-
den states ht are generated by taking the earlier hidden state ht−1 as well as the
input for position t. These hidden states are generated by lining up the positions
with respect to the steps in the process of computation. The sequential nature dis-
played in these problems makes it impossible for any parallelization within the
training examples. As the length of the sentences increases, this issue becomes
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more critical in nature. There have been many efforts to deal with this issue using
various techniques in recurrent language models and encoder-decoder architec-
tures [11] [18].

It can be said that mechanisms that make use of attention based approaches
have become vital while dealing with sequence modeling and transduction mod-
els as they allow us to model the dependencies without focusing too much on
how far apart are they positioned in the input and output sequences [2]. This re-
quires a sequence to sequence architecture that can utilize the mechanism of self
attention to assign varying significance to different parts of the input data, which
brings the transformer into light.

Many NMT models generally target a single language pair translation, where
the input is in the form of one language and the generated translated output is in
the desired language. Whereas models like multilingual neural machine transla-
tion MNMT [24], utilize a single NMT model to enable translation among multiple
languages instead of training a single model for every individual language pair.
But little research has been done on the ability of NMT models to translate multi-
lingual sentences, where the input sentence may consist of entire phrases or words
in multiple languages, into the desired target language. This kind of translation
can be useful in the translation of Lok sabha debate sessions that are recorded in
two different languages. It can also be used to translate casual conversations often
found in many messenger applications. This thesis tries to establish the ability of
an MNMT model based on the architecture of a transformer to translate sentences
consisting of multilingual phrases or words into a single language.

Problem statement - Given a dataset that has sentences composed of multiple
languages, the aim is to translate these sentences into a single target language
utilizing the transformer as shown in Fig. 1.1.

The major contributions of this work are as follows :

• A multilingual model is trained to translate sentences formed by the combi-
nation of two languages.

• Two custom datasets are created for the purpose of learning a transformer
based multilingual model.
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Figure 1.1: Illustrations of expected translations
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CHAPTER 2

Literature Survey

We will now look into the types of machine learning techniques explored in this
work. Firstly, we come across statistical machine translation (SMT) which was
developed during the 1980s. The concept of SMT was designed while thinking of
translation as a machine learning task. Provided with a large parallel corpus of
already translated text, the job of the SMT is to take a series of symbols provided
in the source language with its corresponding vocabulary and then convert them
into a series of symbols in the target language formed with its corresponding vo-
cabulary. The work in [16] explains the basic idea behind SMT and also sheds
light on the challenges faced. It also shows a classification of the various methods
in this area.

Then we look into rule-based machine translation (RBMT) which was first in-
troduced in 1985. The design of RBMT is formulated on the definition of rules
for syntax, and morphology of a language. In RBMT, a collection of rules and the
vocabulary of both the source and target languages are required as the resources.
The work in [25] explains the basic idea behind RBMT and shows a comparison
between the statistical and rule-based approaches to machine translation with the
help of a case study from the perspective of Indian languages.

The approaches mentioned so far have failed to attain an adequate level of ac-
curacy individually. This led to the creation of hybrid machine translation (HMT).
The chief principle behind HMT is that it combines and uses various machine
translation methods in a single system. The most frequently used combination is
that of SMT and RBMT. The work in [6] explains some of the popular hybridiza-
tion methods and how they try and integrate the principal attributes of the vari-
ous individual techniques while throwing light on the applications of these HMT
methods.

If a machine translation system makes use of an artificial neural network,
which leads to a better fluency of the machine translation and also improves its
accuracy then it can be classified as a NMT model. These NMT models are gener-
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ally established on the basis of an encoder and decoder structure and make use of
RNN. The cyclic nature of RNN enables it to learn the repeated sequences much
more efficiently as compared to other networks. In models such as ConvS2S [7],
Extended Neural GPU [12] and ByteNet [13], conventional neural networks are
used as the building blocks. The goal of all these models is to compute the hidden
representation simultaneously for all input and output positions.

The problem with the above mentioned models is that the amount of com-
putational resources consumed to establish a relationship between two arbitrary
signals in the input or output positions increases proportionally to the separation
between their positions. In the case of ConvS2S, it increases linearly and in the
case of ByteNet, it increases logarithmically. This poses a challenge as learning the
dependencies between positions [9] that are far apart becomes difficult. Learning
these dependencies is a crucial aspect of any machine translations model.

By making use of the transformer, these issues are mitigated and the number of
operations required to learn the dependencies between distant positions become
constant and do not depend on the distance between two such positions. For the
computation of the representation of a sequence, the concept of self-attention is
utilized. It can also be called as intra-attention. It is used to relate the diverse posi-
tions of a single sequence. The concept of self-attention has been successfully uti-
lized in performing various jobs, which include abstractive summarization [22],
reading comprehension [4], learning task-independent sentence representations
[15] and textual entailment [21]. Keeping this in mind we will now look at the
architecture of the transformer in more detail in the next chapter.

Apart from the traditional NMT approaches a multilingual approach of the
same translation method exists. It is multilingual neural machine translation
(MNMT), in which the model is trained to facilitate translation between multi-
ple languages instead of building different models for each individual language
pair. This allows the model to train better on low-resource languages by using
data from various other languages. The work in [24] shows how the model of
an MNMT model is extremely dependent on the kind of languages utilized dur-
ing training because of negative transfer which degrades the performance of the
translation while transferring information from a set of various languages. It also
proposes a technique for MNMT known as the hierarchical knowledge distillation
(HKD) [24] to counter the effect of negative transfer.
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CHAPTER 3

Transformer in NMT

The machine translation model follows an encoder-decoder structure as shown in
Fig. 3.1. The job of the encoder is to map an input sequence (a1, ..., an) where ai sig-
nifies a word embedding onto c = (c1, ...., cn), where ci is a representation of a word
assigned to it by the encoder and c is a sequence of continuous representations. It
is used by the decoder to generate a sequence (b1, ...., bn) as output of words one
word at a time. The nature of the model is auto regressive. The symbols that are
generated previously are taken as input for generating the next symbol.

Figure 3.1: Model Architecture of the Machine translation system
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Figure 3.2: Transformer Sub layer architecture [29]

Now let us look at the pictorial representation of the architecture of a trans-
former as shown in Fig. 3.2. It consists of self attention layers shown in the left
part of Fig. 3.2 and also point wise fully connected layers shown in the right part
of Fig. 3.2. The left half of the transformer is used in each encoder layer as shown
in Fig. 3.1 using two sub layers in each layer and the right half of the transformer
is used in the each decoder layer as shown in Fig. 3.1 using three sub layers in
each layer.

3.1 Encoder Stack and Decoder Stack

3.1.1 Encoder

The job of the encoder is to convert the input word tokens into an embedding
format that can be further used by the decoder while providing the translation.
As seen in Fig. 3.1, 6 layers make up the encoder, where every layer is further di-
vided into 2 sub-layers. The first of these sub-layers is a mechanism that uses self
attention which is multi headed in nature, multi-headed attention will be covered
in the section 3.2.2. The second layer is a feed forward network, which is fully

7



Figure 3.3: Look ahead mask

connected position wise. A residual connection [8] is used in both sub layers, the
result of which is then subjected to layer normalization [1].

3.1.2 Decoder

The job of the decoder is to the take the embedded input from the encoder and
convert them into the their corresponding translations and provide the word in
the target language as the final output. As seen in Fig. 3.1 the decoder also consists
of 6 layers, where each layer is further divided into 3 sub-layers. The initial two
sub-layers are similar to those used in the encoder, the third sub-layer is used to
perform encoder-decoder attention on the output generated by the encoder. As in
the case of the encoder, a residual connection is used here and this output under-
goes layer normalization. But there is a subtle modification to the self-attending
sub-layer in the decoder, the combination of the look-ahead mask, as shown in
Fig. 3.3, and the offset of output embeddings by one position makes sure, that the
prediction for the symbol in position i depends only on the previously generated
outputs.

3.2 Attention

When a sentence is composed in any language, there are words within it that have
some interrelationship. To capture this relationship between words within a sen-
tence, the concept known as "attention" was formed. It decides which word in
the sentence pays how much attention to another word in that sentence. Atten-
tion [29] may be understood as a relationship between queries and a set of pairs,
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whose nature is that of a key and value, to the output. Here, query(q), key(k) and
value(v) are all vectors. For each value, a weight will be assigned. This weight is
computed by using a similarity function of a query with its respective key. Now
the output can be calculated as a weighted sum of these values. There are two
kinds of attention that are used in the machine translation system, and they are
discussed below.

3.2.1 Attention using Dot Product

For calculating attention, we need an input that is made up of queries q and keys
k which have dimensions of dk. We also need values v which has a dimension of
dv. Queries in machine translation model can be understood as the input word
vector, keys are the input word vectors for all the other words and values are the
collection of positional input embedded vectors which are shown in the flowchart
in Fig. 3.4. The mathematical representation of attention is given as follows :

AT(q, k, v) = S(qkT/
√

dk)v (3.1)

Where AT is attention, S is the softmax activation function and q,k,v are queries,
keys and values, respectively. These attention vectors are computed for each
word. Upon computation, they will contain the information regarding which
word is being paid the most attention, by the encoded word.

3.2.2 Multi-Headed Attention

By using mutli-headed attention [29] we allow the model to simultaneously at-
tend to various representation sub-spaces at various locations, instead of using a
sole attention function. The mathematical representation of multi-headed atten-
tion is given as:

M(q, k, v) = [head1, ..., headh]Ao (3.2)

Where M is a multi headed attention computed for a specific set of query, key, and
value vectors. Here [] represents concatenation operation of the multiple heads
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Figure 3.4: Process for forming self attention vector

taken from 1 to h, where the value of h is taken as 8 as per [29]. It is necessary
to take multiple heads as it increases the model’s ability to focus on various posi-
tions. It also prevents the word from dominating the encoding when an attention
vector is calculated.

Each headi is computed as:

headi = AT(qAq
i , kAk

i , vAv
i ) (3.3)

The projections Aq
i , Ak

i , Av
i , and Ao used above are parameter matrices, these

parameters will be learned as the model is trained on the desired data and will be
adjusted accordingly. Their dimensions are given as follows:
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Aq
i ∈ Rdmod×dk , Ak

i ∈ Rdmod×dk , Av
i ∈ Rdmod×dv , Ao ∈ Rhdv×dmod (3.4)

Here q, k and v are projected h times linearly while using various linear pro-
jections, that can be learned. The dimensions dk and dv are set to 64 and dmod is set
to 512 according to [29]. When the attention function is utilized parallelly on each
of the versions of q, k and v that are projected, they will generate output values of
dimension dv. These outputs are concatenated and then are projected once more,
which then give us the final attention vector of each word.

3.3 Usage of Attention in Machine Translation

In Transformer, attention is used in different ways:

• To enable each individual position within the encoder to pay attention to all
the positions within the earlier layer, the layers utilize self attention within
the encoder, in these layers the q, k and v all are taken from the output gen-
erated by the encoder in the previous layer.

• The decoder also contains self-attention layers, which enable each individ-
ual position of the decoder to pay attention to the positions in the decoder.
If the flow of information is leftward, it will interfere with the auto regres-
sive property. To prevent this, a look ahead mask as shown in Fig. 3.3 is
utilized. It is used to pay attention till the current position, including the
current position.

• In the encoder decoder attention layer, each individual position in the de-
coder is enabled to pay attention to each position in the input sequence. The
q are taken from the output of the earlier decoder layer and the k and v are
taken from the output generated by the encoder.

3.4 Feed Forward Networks

A fully connected layer accompanies each layer in the encoder as well as the de-
coder. It is applied identically and separately for each position. It is made up of
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ReLU activation between two linear transformations. It is given by:

F(x) = max(0, xA1 + c1)A2 + c2 (3.5)

3.5 Softmax and Embeddings

For converting the input tokens as well the output tokens into vectors which have
a dimension of dmod, embeddings are used. A softmax function is used in combi-
nation with the learned linear transformation to help predict the probabilities of
the next word.

3.6 Position wise Encoding

This translation model does not contain any operations that are recurrent or con-
volutional in nature. This creates a need to include the information regarding the
relative or absolute positions of the words in the sequence, which will help the
model to detect the arrangement of the sequence. This is where positional encod-
ings are used. The inputs are first embedded and then the positional encodings
are added to it in the encoder stack as well as the decoder stack. The dimensions
of both these encodings are the same dmod. For this purpose, sine function as well
as cosine function with contrasting frequencies are used. They are given below.

PE(loc,2j) = sin(
loc

100002j/dmod
) (3.6)

The above equation uses the sinusoidal function to keep track of the words
occurring at even locations in a sentence and the below equation uses the cosine
function to keep track of the words occurring at odd locations in a sentence.

PE(loc,2j+1) = cos(
loc

100002j/dmod
) (3.7)

Here loc is the location of the vector and j is the dimension of the vector as
can be seen in Fig. 3.4. The positional encoding vector will follow a particular
pattern. The model learns this pattern through which it will help establish the

12



location of each word or the separation between different words in the sentence.
These positional encoding vectors are added to every input encoding. By doing
this, the encodings are provided with relevant separation of the encoding vectors
after they are projected into the query, key, and value vectors for the computation
of the attention vector.

3.7 Algorithm

In traditional sequence to sequence models that are made up of an encoder de-
coder structure using RNN or LSTM, the encoder will process the sequence given
in the input into a context vector of constant length. This context vector is fed
to the decoder as an input. Using this, the decoder starts predicting the output.
But the problem associated with a fixed length context vector is that it is unable
to remember sequences which are longer. It tends to forget the beginning part of
the sequence after the whole sequence is processed. This is the motivation for the
development of the attention mechanism. For the purpose of understanding how
the attention mechanism works, let us walk through an example where a Hindi
sentence is converted into an English sentence. The algorithm is explained next.

3.7.1 Computation of score for Encoder State

Each encoder state E1, E2, E3, E4 and E5 helps in the storage of local information
of the sequence given as input. The objective is to predict the first word of the
output translation, but the decoder is not provided with any initial state. So the
output of the last encoder state E5 is used as the input to the first decoder state.
A feed forward network is now trained using every encoder state and also the
present decoder state. Let us say the information to predict the first word in the
translated output is stored in the encoder states E1 and E2. Therefore we need
the decoder to pay more attention these states rather than the others. This is the
reason for training a feed forward network so that it will learn to allocate a higher
score to the states which require more attention and allocate a lower score to the
states that have less significance. Let us consider that S1, S2, S3, S4 and S5 are the
generated scores for each encoder state by the feed forward network, which will
be used later on to compute the attention weights. Since the information is in E1

and E2 their scores S1 and S2 will be higher compared to the others.
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3.7.2 Computation of the Attention Weights

A softmax is applied on the scores that are generated to produce attention weights
w1, w2, w3, w4 and w5. In this particular example the values of w1 and w2 will be
higher compared to the others to help predict the first word.

3.7.3 Computation of the Attention Vector

After the generation of the attention weights, an attention vector will be generated
that can be utilized by the decoder. The decoder is now able to predict the next
word that occurs in the sequence. The attention vector AV is calculated as:

AV =
5

∑
i=1

wi ∗ Ei (3.8)

In this case, the values of w1 and w2 are higher compared to the others, there-
fore it contains more information from the states E1 and E2.

3.7.4 Decoder output

The decoder makes use of this attention vector and the word that was generated
in the earlier time step to predict the upcoming word that occurs in the sequence.
Since in the initial time step, there is no output generated from the earlier time
step, a special token START is given to the decoder. The decoder predicts the first
word of the sequence and also generates a hidden state d1.

• Decoding at time step 2: To predict the upcoming word in the sequence,
the internal state d1 along with all the encoder states E1, E2, E3, E4 and E5 are
given to the feed forward network which then generates new S1, S2, S3, S4

and S5 scores which are used to compute new attention weights and a new
context vector is generated. This attention vector is compounded with the
output of the earlier time step and is given to the decoder to predict the next
word also producing a new internal state d2.

This process is sustained till the END token is generated by the decoder. After
the generation of this token the process is terminated. It is to be noted is that in
the case of traditional Seq2Seq models, a fixed context vector is used for every
decoder time step, whereas in the case of attention mechanism, a new attention
vector is computed every time by using newly generated attention weights.
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3.8 Methodology

When working with any model that is based on the transformer architecture, the
requirement for training data is huge. As a result, the training time, as well as
the resources required, are quite high as can be seen from the English to French
translation implemented in [29], which took 3.5 training days on eight NVIDIA
P100 GPUs on a dataset of 36M English-French sentence pairs. For this reason,
experiments are usually performed on a pre-trained model. For the purpose of
this work, a pre-trained multilingual model opus-mt was chosen. This model
supports the translation of nearly 127 Indo-European languages into English.

Initially the performance of this model, based on transformer architecture, is
evaluated against a fraction of two custom made data sets. These custom data sets
will be described in chapter 4. A baseline score is generated on the pre-trained
model for each data set. After this, the base model is fine-tuned on the remaining
fraction of the two custom data sets in increasing steps of data size. The fraction,
which was initially used to evaluate the base model was used again to evaluate
the newly fine-tuned models.

The model used here is established on a transformer-based NMT. This model
utilises Marian-NMT framework. This framework is a NMT toolbox which is
production-ready and stable. It offers efficient training and decoding potential.
The architecture is based on a standard transformer setup utilizing 6 self-attentive
layers. Both the encoder as well as the decoder make use of 6 layers. The network
makes use of 8 attention heads h in each layer.

Since the purpose of this model is to support translation among multiple lan-
guages and not translate the sentences where the input consists of multilingual
components, it will have to be modified so as to perform the task at hand, and
therefore this model will be subjected to fine-tuning on the custom data sets. We
will now look into fine-tuning in more detail in the following section.

3.8.1 Fine-tuning

“Fine-tuning" refers to the process of taking a pre-trained model and training it
again on the desired custom data sets. The process of fine-tuning adjusts and
updates the weights of the pre-trained model so that it can accommodate the traits
of the custom data set and perform the desired task. Fine-tuning a pre-trained
model improves its ability to generalize. The process of fine-tuning is pictorially
represented in the Fig. 3.5. The process of fine-tuning involves the following
steps:
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Figure 3.5: Fine-tuning a model

• Initially a pre-trained model can be picked, or a model can be trained to
perform the required base operations. In this case the base operation would
be the translation of a Hindi sentence to an English sentence.

• Now a target model is created which contains all the model designs and pa-
rameters of the source model excluding the layer from where the output is
generated. It is assumed that the parameters of the model contain the infor-
mation learned from the source dataset. This information may be relevant to
the target dataset. It is also assumed that the labels of the source dataset are
closely related to the output layer of the source model, therefore the output
layer is not used in the new target model.

• A new output layer is added to the target model, where the number of out-
puts is equal to the number of classes in the target dataset. Then the param-
eters of this new output layer are randomly initialized.

• Now the target model is trained on the custom dataset. During this process,
the output layer is trained from the beginning and the parameters of the
other layers are adjusted according to the parameters of the source model.
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CHAPTER 4

Experiments and Results

4.1 Evaluation Metric

The ideal evaluation metric for evaluating the performance of machine translation
is human evaluation, as it considers many aspects of a translation such as fidelity,
adequacy, and fluency of the translation. It may be an extensive approach but it is
very expensive as takes months for the evaluation process. This shows the need
for an automatic evaluation metric of translation, which is quick, inexpensive,
language-independent, and can correlate greatly with human evaluation.

4.1.1 Bleu Score

Bleu score [20] was created as a replacement for human evaluation. The idea
behind bleu score is to determine the closeness of a machine translation to its
corresponding human translation, the more similar the machine translation is to
the human translation the better. Bleu score is computed as follows:

P =
m
wt

(4.1)

Where P is unigram precision, m is the number of words from the generated
translation that are found in the reference translation and wt is the total number
of words in the generated translation. This quantity shows what percentage of
words in the generated translation are matching with the reference translation.

p =

{
1 i f c > r

e(1− r
c) i f c ≤ r

(4.2)

Where p is the brevity penalty which gives a penalty with an exponential de-
cay to the generated translations that are too short because they cannot be com-
pared to the reference translations. Here c is the length of the generated transla-
tion and r is the length of the reference sentence.
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BLEU = p · e∑N
n=1(

1
N ∗logPn) (4.3)

Here N is the N-gram size. It takes into consideration how many words must
be considered for each gram. The value of N is set to 4. This bleu score is used as
an estimate of the model performance by evaluating the model generated transla-
tion against the reference translation.

4.2 Dataset

The model that was inferred was originally trained on the OPUS [28] data set
which consists nearly 200 languages with over 3.2 billion sentences and fragments
of sentences which contain 28 billion tokens. The model was trained to behave as
a multilingual translation model with the capability of translating 59 languages
into English.

Creation of data for machine translation is a difficult task as it requires a highly
skilled professional to give proper translations of a given source sentence. For the
scope of this work the custom data sets were created with the help of an already
existing dataset. For the experiments mentioned in this work, two custom data
sets were created. They are described as follows:

4.2.1 Data-1

The purpose of this dataset is to simulate the situation where a translation is re-
quired when the input is a sentence formed by the combination of two languages,
where one half of the sentence is in one language and the other half in a different
language.

This custom data set was created with the help of the sentences from the Hindi-
EnCorp [3] dataset which consists of nearly 1,27,000 Hindi-English sentence pairs.
The Hindi-English sentence pairs provided by the HindiEncorp dataset can be
seen in Fig. 4.1. The custom data set consists of three variations of sentence pairs
such as a) A single sentence in Hindi with its corresponding English translation, b)
A sentence which begins in Hindi and ends in English with its combined transla-
tion in English and c) A sentence which begins with English and ends with Hindi
with its combined translation in English. The variations b) and c) were created by
using two consecutive sentence pairs from the HindiEnCorp dataset. This custom
data set consists of 95,642 such sentence pairs. The sentence pairs of this data set
can be visualized as shown in Fig. 4.2.
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Figure 4.1: Illustration of the sentence pairs from HindiEncorp dataset

4.2.2 Data-2

The purpose of this dataset is to simulate the situation where a translation is re-
quired when the input is a sentence which is formed with words from two differ-
ent languages and where the order in which the languages are used is not specific
as in the above case.

This custom data set was also created with the help of the sentences from the
HindiEnCorp dataset. For its creation, first a Hindi sentence was taken and a ran-
dom number was generated in the range of 1 to half of the sentence length. This is
the number of words that will be replaced from the sentence in English. Only half
of length was used so as to not completely replace the sentence. After this ran-
dom indices are generated, total indices equal to the random number generated
previously, the word at this random index within the sentence is replaced with its
English counterpart. 10,000 such pairs were created. The sentence pairs of this
data set can be visualized as shown in Fig. 4.2.

4.3 Training and Testing

We have two custom data sets, to evaluate the performance of the model on them,
experiments were carried out in the following manner:
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Figure 4.2: Illustration of the two custom data sets

4.3.1 For Data-1

The model was trained on a fraction of the custom data set. This fraction has
been iteratively increased across various experiments and the results are shown
in Table 4.1. The first 10,000 sentence pairs of the custom data set were fixed as the
testing data set across all the experiments. Initially the sentence pairs in the range
of 10k to 20k were selected as the training set and the performance of the model
was evaluated after training it on this data set. This process was repeated while
increasing the size of the training data set by 10,000 during each experiment and
the performance was noted. For these experiments the number of epochs was set
to 1, and a batch size of 1 were fixed. Adamw [17] was used as the optimizer here
therefore a weight decay of 0.01 was fixed.

The effect of varying the weight decay from 0.01 to 0.1 over a fixed training
set of sentence pairs in the range of 10k to 20k while the testing set is depicted in
Table 4.2. When the number of epochs was increased from 1 to 2 while taking a
weight decay of 0.01, and training the model using sentence pairs in the range of
10k to 20k, the model showed improvement in performance.
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Training set Testing set Bleu Score
Pretrained first 10k 18.333
10k-20k first 10k 18.942
10k-30k first 10k 18.481
10k-40k first 10k 18.951
10k-50k first 10k 19.112
10k-60k first 10k 19.078
10k-70k first 10k 19.079
10k-80k first 10k 19.191
10k-90k first 10k 19.017

Table 4.1: Bleu Score with varying size of training data for Data-1

4.3.2 For Data-2

The model was trained on a fraction of the custom data set. This fraction has
been iteratively increased across various experiments and the results are shown
in Table 4.3. The first 2,000 sentence pairs of the custom data set were fixed as the
testing data set across all the experiments. Initially the sentence pairs in the range
of 2k to 2.5k were selected as the training set and the performance of the model
was evaluated after training it on this data set. This process was repeated while
increasing the size of the training data set by 1,000 during each experiment and
the performance was noted. For these experiments the number of epochs was set
to 1, a batch size of 1 and weight decay of 0.01 were fixed.

4.4 Results for Data-1

When the base model was evaluated against the test set, a bleu score of 18.333
was observed. Upon fine-tuning the base model on the custom data set as shown
in Table 4.1, increasing the size of the training set almost always improves the
bleu score and always performs better than the base model. Consequently in-
creasing the weight decay while keeping other parameters constant has shown
an improvement in the bleu score as can be seen in Table 4.2. Furthermore when
the number of epochs was increased from 1 to 2 while keeping the other param-
eters constant showed an improvement in the performance which produced the
highest bleu score of 19.827, amongst all the experiments carried out so far.
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Training set Testing set Weight decay Bleu Score
10k-20k first 10k 0.05 18.929
10k-20k first 10k 0.07 18.931
10k-20k first 10k 0.1 19.124

Table 4.2: Bleu Score with varying Weight Decay for Data-1

Training set Testing set Bleu Score
Pretrained first 2k 8.884
2k-2.5k first 2k 12.027
2k-3k first 2k 18.348
2k-4k first 2k 16.456
2k-5k first 2k 17.668
2k-6k first 2k 16.071
2k-7k first 2k 15.242
2k-8k first 2k 14.705
2k-9k first 2k 14.228
2k-10k first 2k 13.922

Table 4.3: Bleu Score with varying size of training data for Data-2

4.5 Results for Data-2

When the base model was evaluated against the test set, a bleu score of 8.884 was
observed. Upon fine-tuning the base model on the custom data set as shown in
Table 4.3, increasing the size of the training set after a certain point resulted in a
decrease of performance of the model.

One should note that the method utilized for the creation of the custom data
set 2 does not guarantee the preservation of context, due to the fact that random
words were picked to be replaced. This can degrade context in cases where a
combination of words in one language has a translation which has fewer number
of words than the source phrase. So, by replacing even one word within that
combination of words, its translation will be affected.

The generated results in both the cases are illustrated in Fig. 4.3 and Fig. 4.4.
And the trends followed by the model upon varying the size of the training data
in both the cases are shown in Fig. 4.5 and Fig. 4.6.
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Figure 4.3: Translation result for the model fine-tuned on Data-1
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Figure 4.4: Translation result for the model fine-tuned on Data-2
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Figure 4.5: Result of varying the size of training data set for Data-1

Figure 4.6: Result of varying the size of training data set for Data-2
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CHAPTER 5

Conclusions and Future Work

In this work, the scope of fine-tuning the pre-trained multilingual model has been
explored on two different kinds of custom data sets for the translation of multilin-
gual sentences. For the scope of this work only the languages Hindi and English
were used, but the same experiments can be carried out with different languages.
The first dataset consists of source sentences in which one half of the sentence is in
one language and the other half is in another language. The second dataset con-
sists of source sentences in which some words have been replaced with their trans-
lations in another language. Utilizing these custom data sets, experiments have
been carried out while fine-tuning the base model with varying size of the train-
ing data and the performance of the model was observed. It was observed that
regardless of the size of training data, the performance of the fine-tuned model
was better as compared to base model in both the custom data sets.

These results show that the transformer is capable of handling the translation
of multilingual sentences. It translates these sentences with a decent bleu score,
but the performance of this model can be improved if the model can be provided
with a dataset where the multilingual sentences have more contextual relation-
ship.

A data set with more contextual relationship can be created for multilingual
sentences containing the languages Hindi and English by taking the Hinglish
data set [26] and replacing the code-mixed hinglish text with its corresponding
devanagari equivalent. This newly formed dataset can then be used to perform
the experiments in this work to yield better results. Upon construction of datasets
including other language pairs in the format specified in this work, work can be
done to study the effect of a specific language pair on translation.

One possible application of the model established in this work is to develop a
system with it as the base, that can work as a translator between two parties who
communicate using a mixture of two or more languages but have one language in
common.
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