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Abstract

Digital image processing has exhibited a tremendous growth during past decades in terms

of both the theoretical developments and applications. At present, image processing and

computer vision are the leading technologies in a number of areas that includes digital

communication, medical imaging, the Internet, multimedia, manufacturing, remote sens-

ing, biometrics and robotics. The recent increase in the widespread use of cheaper digital

imaging terminals such as personal digital assistants, cellular phones, digital camera, high

de�nition TV and computers in consumer market has brought with it a simultaneous de-

mand for higher-resolution (HR) images and video. Since the high resolution images and

video carry more details and subtle gray level transitions, they o�er pleasant views of the

pictures and videos on these devices. In commercial and industrial applications the high

resolution images are desired as they lead to better analysis, interpretation and classi-

�cation of the information in the images. High resolution images provide better details

that are critical in many imaging applications such as medical imaging, remote sensing,

surveillance.

The resolution of the image captured using a digital camera depends on the number of

the photo detectors in the optical sensors. Increasing the density of the photo detectors

leads to high resolution images. The current hardware approach to capture images with

high resolution relies on sensor manufacturing technology that attempts to increase the

number of pixels per unit area by reducing the pixel size. The cost for such sensors

and related high-precision optics may be prohibitively high for consumer and commercial

applications. Further, there is a limitation to pixel size reduction due to shot noise

encountered in the sensor itself. Since the current sensor manufacturing technology has

almost reached this limit, the hardware approach is no more helpful beyond this limit.

One promising solution is to use signal processing approaches based on computational,

mathematical, and statistical techniques. Because of the recent emergence of these key-

relevant techniques, resolution enhancement algorithms have received a great deal of

attention. Super-resolution is an algorithmic approach to reconstruct high resolution

image using one or more low resolution images. The main advantages of the approach are

that it costs less, it is easy to implement and the existing low resolution imaging systems

can be used without any additional expense. The application of such algorithms will
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certainly grow in situations where high quality optical imaging systems are too expensive

to utilize.

The motion based super-resolution approaches produce a high resolution image using

non-redundant information from the multiple sub-pixel shifted low resolution observa-

tions. The di�culty in these approaches is the estimation of motion between the low

resolution frames at a sub-pixel accuracy. Motion-free super-resolution techniques allevi-

ate this problem by using cues other than motion cue. The additional observations are

generated without introducing relative motion among them.

In this thesis, we present learning based approaches for motion-free super-resolution.

First we solve the super-resolution problem using zoom cue. The observations of a static

scene are captured by varying the zoom setting of a camera. The least zoomed image

containing the entire scene is super-resolved at the resolution of the most zoomed image

which contains a small area of the entire scene. Generally, the decimation process is

modeled as the averaging process and the aliased pixel in the low resolution image is

obtained by averaging the corresponding pixels in the high resolution image. However,

aliasing depends on several factors such as zooming and camera hardware. This motivates

us to estimate the aliasing. Since a part of the scene is available at high resolution in

the most zoomed images, we make use of the same to estimate the aliasing on the lesser

zoomed observations. The aliasing is estimated using the most zoomed image and the

lesser zoomed images. We represent the super-resolved image using Markov random �elds

(MRF) and obtain super-resolution using maximum a posteriori technique. We demon-

strate the application of proposed aliasing learning technique to the fusion of remotely

sensed image. While experimenting, the MRF prior model parameters were adjusted on

trial and error basis. A better solution can be obtained using the parameters estimated

from the observations themselves. The estimation of the parameters requires the compu-

tation of the partition function. Since it is a computationally intensive technique, we use

autoregressive (AR) model to represent the super-resolved image. The AR prior model

parameters are obtained from the most zoomed observation. We apply this technique to

the fusion in remotely sensed images.

The spatial features of a low resolution image are related to its high resolution version.

The analytical representation of the relationship of the spatial features across the scales

is di�cult. This motivates us to prepare a database of low resolution images and its high
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resolution versions all captured using same real camera and use this database to obtain

high frequency details of the super-resolved image. We propose wavelet based new learn-

ing approach using this database and obtain close approximation to the super-resolved

image. The close approximation is used as an initial estimate while minimizing the cost

function. We employ a prior model that can adapt to the local structure of the image and

estimate the model parameters as well as the aliasing from the close approximation. The

proposed approach is extended to super-resolve color images. We learn the details of the

chrominance components using wavelet based interpolation technique and super-resolve

the luminance component using the proposed approach. We show the results for gray

level images and for color images and compare the them with existing techniques.

In most current image acquisition systems in handheld devices, images are compressed

prior to digital storage and transmission. Since, the discrete cosine transform (DCT) is

the basis of many popular codecs such as JPEG, MPEG and H.26X, we consider the DCT

for learning. The use the DCT for learning alleviates the limitations of wavelet based

learning approach that it can not recover the edges oriented along arbitrary directions.

We propose a learning based approach in the discrete cosine transform domain to learn

the �ner details of the super-resolved image from the database of low resolution (LR)

images and their high resolution (HR) versions. Regularization using the homogeneous

prior model imposes the smoothness constraint everywhere in the image and leads to

smooth solution. To preserve edges and �ner details, we represent the super-resolved

image using nonhomogeneous AR prior model and solve the single frame super-resolution

problem in regularization framework.

Finally, we readdress the zoom based super-resolution problem using discontinuity

preserving MRF prior in order to prevent the distortions across the edges while optimiza-

tion. We obtain the close approximation for the super-resolved image using the learning

based approach and use it to estimate the model parameters and the aliasing. Since the

cost function consists of a linear term and a non-linear term, it cannot be optimized using

simple gradient descent optimization technique. The global optimization technique such

as simulated annealing can be employed. Since it is computationally taxing, we propose

the use of particle swarm optimization technique. We show the computational advantage

of the proposed approach.
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Chapter 1

Introduction

\One picture is worth a thousand words." This proverb correctly expresses the amount

of information contained in a picture. Pictures are the most e�ective form of information

representation for mass communication. The tremendous volume of optical information

and the need for its processing, storage and transmission paved the way to image pro-

cessing by digital computers. In past few decades, the image processing has exhibited

a remarkable growth and created important technological impact in several areas such

as medicine, forensic science, telecommunications, printing technology, TV broadcasting,

remote sensing, �lm industry and many more.

Digital image processing concerns the transformation of an image to a digital for-

mat and its processing by digital computers. Image processing covers a broad scope of

techniques that manipulates images to meet the needs of numerous applications. These

techniques can enhance an image, highlight certain features of an image, improve the

resolution of an image, create a new image from portions of other images, embed a secret

code in an image for security, restore an image that has been degraded during acquisition

or transmission and so on. Since both the input and output of a digital image process-

ing system are digital images the images processing algorithms are classi�ed as low-level

vision algorithms.

Digital image formation is the �rst step in any digital image processing application.

Generally, an image formation system consists of three subsystems; an optical system,

a sensor and a digitizer. The optical system collects the light signal re
ected from the

real world objects under observation and concentrate the signal to fall on the sensor.

The sensor receives this optical signal and converts it to an electrical signal. This elec-
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trical signal is fed to the digitizer which �nally transforms it to a digital image. During

the entire process of capturing a digital image of a scene, each subsystem introduces a

degradation or deformation to the digital image. These degradations may include geo-

metrical distortions, nonlinear transformation, decimation, blur, and noise. The image

processing techniques attempt to recover the digital image by removing or reducing the

deformations and degradations introduced by the subsystems while capturing the image.

The mathematical modeling of the image formation system is very important in order

to have precise knowledge of the degradation introduced. The accurate modeling of the

degradation helps to improve the performance of the image processing system and �nally

leads to better solution.

In almost all imaging applications, high quality images are demanded. The high

quality images that provide more detailed information are crucial in applications such

as clinical diagnosis, biometrics, industrial inspection, surveillance, remote sensing and

machine vision. The images with more details help accurate localization of the diseased

cells in medical images, faster and correct identi�cation of criminals, more pleasing view

in an high de�nition television and better classi�cation and interpretation of the contents

of the image. The amount of the details available in an image captured using an image

acquisition system depends on the sensor's ability to detect smallest optical signal. The

acquisition of images with more information require complex optical system with high

quality sensors. Speci�cally, the imaging systems and optical components necessary to

capture high quality images become prohibitively expensive for scienti�c as well as com-

mercial applications. Further there exist a technical limit on manufacturing the sensors

that can give the best quality images rich in the �ner details. The current image sensor

manufacturing technology has almost reached this limit. Thus there is a clear need for

�nding a relatively inexpensive and an easy to implement solution to this problem using

signal processing tools. The applications of such algorithms will certainly be useful in

situations where high quality optical imaging systems cannot be incorporated or are too

expensive to utilize.
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1.1 What is Image Resolution?

The term `resolution' refers to the smallest measurable physical quantity. It is used to

quantify the quality of various physical instruments. The high resolution of an instrument

enables one to measure the quantity with more precision. The resolution of an imaging

system is de�ned as the ability of the system to record �ne detail in a distinguishable

manner [6]. The term `image resolution' can be de�ned as the smallest measurable detail

in a visual presentation. In image processing, it is measure of the amount of detail

provided by an image or a video signal. The term image resolution is classi�ed into

di�erent types.

� Spatial resolution: A digital image is represented using a set of picture elements.

These picture elements are called `pixels' or `pels'. A pixel at any location in

an image carry the information regarding the image intensity at that location in

the image. An image represented using a large number of pixels conveys more

information as compared to the same image when represented using less number of

pixels. The spatial resolution refers to the spacing of the pixels in an image and is

measured in pixels/inch (ppi). High spatial resolution allows for sharp details and

�ne intensity transitions across all directions. The representation of an image with

sharp edges and subtle intensity transition by a spatially less dense set of pixels,

gives rise to blocky e�ects. On other hand, the images with spatially dense set of

pixels enable the viewer the perception of �ner details and o�er pleasing view.

� Brightness resolution: Pixels carry information of the image intensity in form of

binary digits called `bits'. The intensity at any location in a real world scene may

vary from zero to in�nity. However in digital image it is not possible to represent this

entire range. In practice this range is divided into a �nite levels and the real world

intensity is quantized and assigned the nearest �nite level. The brightness resolution

refers to the smallest change in brightness that can be represented in an image. Each

brightness level is assigned a binary code. The increase in the brightness resolution

requires more number brightness levels and hence more number of bits for each

level. A binary image has two levels; black and white, hence requires only one bit

for each level. A gray scale image is usually quantized using 256 grey levels with

each level represented using 8 bits. Similarly, if each color plane of an RGB image
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requires 8 bits then at least 24 bits are needed for representing each pixel.

� Spectral resolution: Spectral resolution refers to the frequency or spectral resolving

power of a sensor and is de�ned as the smallest resolvable wavelength di�erence by

the sensor. The spectral resolution plays important role in satellite imaging. High

spectral resolution images captured by remote sensing camera provide more detailed

information about mineral resources and geographical structures of the earth or any

other planet under observation.

� Temporal resolution: The term temporal resolution is related to video signals. A

video of an event is a sequence of images (frames) captured at regular and short

time interval between them. Temporal resolution, also known as frame rate, is the

measure of the capability of displaying smallest movement/ motion of the moving

objects in the video. Thus it refers to the number of frames captured per second.

A video captured with low temporal resolution exhibits abrupt and discontinuous

transitions of the moving objects in the scene/event. With high temporal resolution,

the movement of the moving objects appears smooth and continuous. For a given

duration of time, a high temporal resolution video requires more memory for storage

and large bandwidth for transmission. The standard television signals use a typical

frame rate of 25 frames per second.

In this work we address the problem of increasing the spatial resolution of given low

spatial resolution images. In the rest of the thesis the term resolution is explicitly used

to mean spatial resolution unless speci�ed otherwise.

1.2 Limitations of Optical Imaging Systems

The optical sensor is the most important component of any digital imaging system. This

sensor convert optical energy into an electrical signal. In modern digital cameras, charge

coupled devices (CCD) and CMOS sensors are widely used to capture digital images.

These sensors consist of an array of photo-detectors. Each of these detectors generates

an output voltage signal proportional to light falling on it. The spatial resolution of an

image captured using a camera is determined by the number of photo-detector elements

in the sensor. A sensor with less number of photo-detectors samples the scene with a low
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sampling frequency and causes aliasing e�ect. Such sensors produce low resolution image

with blocky e�ect. The direct solution for enhancing spatial resolution of the image is to

increase the number of photo-detectors in the sensor. As the number of photo-detectors

increases in the sensor chip, the size of the chip increases. This leads to an increase in

capacitance [7]. Since, the increase in the capacitance causes limitation on charge transfer

rate, this approach is not considered e�ective. Alternate to this solution is to increase the

photo-detector density by reducing the size of photo-detectors. As the photo-detector size

decreases, the amount of light falling on each photo-detector also decreases. At certain

size of the detector, this amount of light reaches to such a low level that light signal is

no more prominent as compared to the noise. This generates shot noise that degrades

the image quality severely [8, 9]. Thus there exists a lower limit on reducing the size

of photo-detector element. The optimal size photo-detector to generate the light signal

without su�ering from the e�ects of shot noise is estimated at about 40 �m2 for a 35

�m CMOS process. The current image sensor technology has almost reached this level.

Therefore, new approaches towards increasing spatial resolution are required to overcome

the inherent limitations of the sensors and optical imaging systems. The high cost for

high precision optics and image sensors is also an important factor in many commercial

applications. Hence, a promising approach is to use algorithmic approaches based on

digital signal processing techniques to construct a high resolution image from one or

more available low resolution observations.

1.3 Super-resolution Reconstruction

In the process of capturing an image using a digital image acquisition system, there

is a natural loss of spatial resolution. There are many factors that contribute to this

e�ect. These include optical distortions such as out of focus, di�raction limits; motion

blur due to limited shutter speed or relative movement between camera and the object;

noise occurring within the sensor or during transmission and insu�cient sensor density.

The resulting image usually degraded due to blur, noise and aliasing e�ects. Figure

1.1 illustrates the degradations introduced in the image at various stages of the image

capturing process. Aliasing occurs when the image is sampled at low spatial sampling

rate and it causes the distortions in the high frequency contents of the image. Resolution
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Figure 1.1: Loss of information during the process of recording an image using a digital
camera. Here, LR stands for low resolution.

improvement by applying tools from digital signal processing technique has been a topic

of great interest. The term `super-resolution' refers to such signal processing techniques

that reconstruct high spatial resolution image from one or more low resolution images.

The goal of super-resolution techniques is to recover the high frequency content that lost

during image acquisition process. In e�ect, although the main concern of the super-

resolution algorithms is to reconstruct high resolution images from undersampled low

resolution observations, it produce high quality images from noisy, blurred and degraded

images. The word `super' in super-resolution represents very well the characteristics

of the technique overcoming the inherent resolution limitation of low resolution imaging

systems. The advantages of super-resolution approach are that the existing low resolution

imaging systems can be still utilized without any additional hardware and it costs less

and o�ers 
exibility.

The Super-resolution reconstruction problem is closely related to image restoration

problem. The goal of image restoration is to recover an image from degradations such as

blur and noise, and is does not increase the size of the image. Thus, for image restoration

problem, the size of the restored image is the same as that of the observed image while

it is di�erent in image super-resolution depending on the decimation factor of the super-

resolved image. Image interpolation is an another problem related to super-resolution.

It increases the size of image using a single and aliased low resolution observation. Since

the single image can provide no more non-redundant information, the quality of the

interpolated images is very much limited. Some of the interpolation methods convolves

image with a �lter designed to boost high frequency contents. The drawback of such

methods is that it also ampli�es any noise in the image and degrades the quality. The

quality of an image interpolated from an aliased low resolution image is inherently limited

even though the ideal sinc function is employed. The single image interpolation techniques
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cannot recover the high frequency components lost or degraded during low resolution

sampling process. For this reason, image interpolation methods are not considered as

super-resolution techniques.

1.3.1 Observation Model

In order to apply a super-resolution algorithm, a detailed understanding of how images

are captured and of the transformations they undergo is necessary. The common digital

image acquisition systems (digital camera, video camera/camcorders) consist of focusing

lens, optical sensors, processor chip, electronic circuits and other mechanical subsystems.

In the process of capturing an image of a scene using such camera, the high resolution

image goes through a sequence of degradations, including a blur, down-sampling, and

additive noise. There is a natural loss of spatial resolution caused by optical distortions

such as insu�cient sensor density, out-of-focus and di�raction limit. The observations

may be blurred due to causes like optical aberration, relative motion between camera and

object, limited shutter speed and atmospheric turbulence. Furthermore, the images could

be degraded by various types of noise occurring within the sensor or during transmission.

The frames captured using video camera may be rotated and scaled due to camera motion

like zooming, panning, tilting. In this case, blur may also be introduced due to relative

motion between the observations. Thus the observed images are degraded versions of the

high resolution images. In order to analyze the super-resolution reconstruction problem,

it is required to formulate a mathematical model that represents the image acquisition

process. This model, known as observation or forward model, relates the original high

resolution image to the observed low resolution image(s). The correct formulation of

the observation model plays an important role in the success of any super-resolution

approach. The most commonly used forward models for super-resolution reconstruction

incorporate translation, blur, aliasing and noise in the formulation. A typical forward

model is shown in Figure 1.2.

1.3.2 Super-resolution: An Ill-posed Inverse Problem

The Super-resolution algorithms attempt to reconstruct the high resolution image cor-

rupted by the limitations of the optical imaging systems. The algorithms estimate the



1.3 Super-resolution Reconstruction 8

Contineous 
Scene

Sampling 
in Time

High Resolution 
Image Z

Warping Blur
Sampling 
in Space

Noise
n

Observed 
Low Resolution

Image  Y

Figure 1.2: A typical image formation model showing relationship between low reolution
image and high resolution image.
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Figure 1.3: Schematic representation of inverse problem. The forward model is a mathe-
matical description of the image degradation process. The inverse problem addresses the
issue of reconstructing the original scene from one or more observations.

high resolution image from the one or more degraded low resolution images. This is an

inverse problem wherein the original information is retrieved from the observed data.

A schematic representation of the inverse problem is shown in Figure 1.3. Solving the

inverse problem requires the inverting the e�ects of the forward model. It is di�cult to

invert the forward model without amplifying the noise in the observed data. Since, in

super-resolution, the forward model of high resolution (HR) to low resolution (LR) trans-

formation is reduced to matrix manipulations, it is logical to formulate the restoration

problem as matrix inversion. The problem is worsened by the fact that the model matrix

is singular. For a singular matrix, there is an in�nite space of solutions. In other words,

there exist in�nite high resolution images which are consistent with the original data.

Thus the super-resolution problem in an ill-posed inverse problem. While solving the

ill-posed inverse problems, knowing the forward model alone is not su�cient to obtain

satisfactory results. Some form of constraints on the space of solutions must be included.

Procedures adopted to stabilize the inversion of ill-posed problems is called regularization.

The regularization based approach solves the ill-posed inverse problems by making them
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better-posed using the prior information about the solution. It is a systematic method

for adding more information to the reconstruction system. Bayesian super-resolution re-

construction approach is commonly employed for solving ill-posed inverse problems. This

method is used when a posterior probability density function of the original image can be

established. Bayesian estimation distinguish between possible solutions by using a priori

image model. The major advantages of the Bayesian super-resolution approach are its

robustness and 
exibility in modeling noise characteristics and a priori knowledge about

the solution. Since, the convex cost function ensures the uniqueness of the solution, an

e�cient gradient descent method can be used to estimate the high resolution image.

1.4 Applications of Super-resolution

Images with high spatial resolution are desired in many imaging applications. High resolu-

tion images leads to better analysis, classi�cation and interpretation. Synthetic zooming

of region of interest [10] is an important application in medical, forensic, surveillance,

and satellite imaging. The medical industry has long been a user of image processing

technology. The images captured using computer aided tomography, magnetic resonance

imaging, positron emission tomography etc are stored in memory. These can be enhanced

using super-resolution so that doctors can focus on the area of interest and make better

diagnosis of diseases. In forensic investigations it is often required to magnify objects

in the scene such as the �ngerprints or face of a criminal. Super-resolving the areas

of interest in such images facilitates the investigation process and �nally leads to quick

identi�cation of criminal. In video surveillance, when any unfair incident happens, the

analysis of the stored video is performed to locate anything suspicious. It is possible that

resolution of the region of interest in the scene of the incident may not be su�cient for

proper interpretation. In this case the frames can be super-resolved to obtain a good

description of the incident [11]. In satellite imaging applications such as remote sensing,

the super-resolution technique can be considered to improve the resolution of the land

area. The satellite images are widely used to estimate the production of the crops in re-

gional land area. The super-resolve images of land �elds can lead to better classi�cation

of crops and hence more accurate estimation of each crop. The super-resolve images of

geographical land area help in better segmentation of regions containing forests, rivers,
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roads and other geographical structures. In military applications, images taken by air-

craft, over geographical areas of interest, provides the war�ghter with the most up-to-date

information. The data can be used to determine potential targets, to locate and deter-

mine the number of vehicles and/or buildings in an area, as well as a variety of other

information. The accuracy of this information depends upon the resolution of the images.

Super-resolution approaches can be helpful to obtain higher resolution images that lead

to more accurate information. Holography is a widely used technique for recording and

reconstructing three-dimensional information of an object. Digital holography technique

uses a CCD camera to record holographic patterns. The low resolution of CCD sensors

signi�cantly limits the size of objects that can be recorded. To overcome this problem,

super-resolution image reconstruction can be used to increase the resolution of holograms

and eliminate the aliasing e�ects caused by undersampling [12]. By doing so, larger ob-

jects can be recorded. Recently, high de�nition television (HDTV) are rapidly getting

popular due to superior perceptual quality of the displayed video. The HDTV signals

are high resolution video signals generated by compliant video acquisition systems. A

non-HDTV signal fed to HDTV results in degraded picture with visual artifacts. At

present, there is a clear need to display a non-HDTV signals such as PAL, NTSC sig-

nals on the HDTV without visual artifacts. Scaling lower-quality signals to �t a TV's

higher-resolution screen is often called upconversion. The super-resolution technique can

be applied for upconversion from a non-HDTV (low resolution) video to an HDTV video

[13, 14]. Similarly, multimedia terminals such as digital cameras, cellular phones, PDAs

(personal digital assistants), and computers are prevalent these days. People would like

to capture, manipulate, and display multimedia content more 
exibly with heterogeneous

terminals so that this content can be shared with friends and peers e�ortlessly. For this

purpose, format conversion and content adaptation techniques are needed to compensate

for the di�erences in these devices [13]. The super-resolution techniques can be em-

ployed in such conversion so that multimedia contents captured by portable devices can

be viewed on higher resolution terminals such as PC or TV screens at home. Some of

the other applications include ultrasound image enhancement [15, 16], text enhancement

for optical character recognition [17, 18, 19], digital video enhancement [20, 21], salient

stills [22] and remote sensing image enhancement [23, 24].

In many applications it may not be feasible to capture the high resolution images even
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if the camera is capable of it. In low cost applications, the super-resolution technique can

be used for saving resources such as memory, bandwidth, power and cost. Consider a wild

life sensor network. The high resolution imagery in this application requires installation

of large number of high end cameras at di�erent locations in forest. The transmission of

the large volume of data generated by these cameras need large transmission bandwidth

as well as large amount of power. Super-resolution technique can help in such situations.

Low cost cameras can be employed to capture the video/images and the data can be

transmitted over the channel having limited bandwidth. At base station super-resolution

techniques can be applied to the received images to reconstruct high resolution images.

1.5 Contributions of the Thesis

Super-resolution algorithms attempt to extract non-redundant information from di�erent

sources and fuse the same in the observed data to obtain super-resolved image. Motion

cue based approaches extract non-redundant information from multiple observations that

have sub-pixel shift between them. These approaches require the task of registration

of the observations. The quality of the super-resolved image is highly dependent on

the accurate registration. This task is very complex and is computationally intensive.

Researchers have proposed approaches that use cues other than motion cue and avoid

the problem of accurate registration. The zoom cue based approaches use observations

captured at di�erent zoom setting of the camera and extract non-redundant information

from the zoomed observations. We in this thesis propose new learning based techniques

for motion-free super-resolution. The contributions of this thesis are summarized as

under.

� The image formation process used in super-resolution problem is generally modeled

using a linear model. The decimation process in this model is represented by a

matrix having a few entries that have constant and equal values. This decimation

matrix simulates a low resolution pixel intensity as an average of the intensities of

corresponding pixels in the high resolution image. However, in practice, intensity at

a pixel in the low resolution image depends on various factors such as camera gain,

illumination condition, zoom factor, noise etc. Hence the aliased low resolution pixel

intensity of an image point is not always equally weighted sum of the high resolution
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intensities. We propose to estimate the aliasing (decimation) from the observations

captured using di�erent zoom settings. We then address the zoom based approach

for super-resolution using decimation estimation. The multiple observations of a

scene are captured by varying the camera zoom setting. The image captured at the

least zoom setting covers the entire scene area. It is sampled with low sampling

rate and is represented by limited number of pixels. The most zoomed image,

captured at highest zoom setting, covers a small portion of the scene. This portion

is represented by relatively large number of pixels and sampled with high sampling

rate. Since we capture the images at di�erent resolutions using zoom camera and

the most zoomed observation is assumed to be alias free, we learn the aliasing

from the most zoomed observation. We then solve this ill-posed inverse problem

using regularization technique. We model represent the super-resolved image using

Markov random �elds and arrive at convex cost function. We optimize it using

simple gradient descent technique.

The MRF model prior involves very high computational complexity as one requires

to compute the partition function in order to estimate the true parameters. This

motivates us to employ a computationally less taxing model for representing the

spatial dependencies. We consider the linear dependency of a pixel in a super-

resolved image to its neighbors and represent the same using autoregressive process

model. We estimate the AR parameters from the most zoomed observation and use

them while regularization.

We then show the application of this approach to multiresolution fusion in remotely

sensed images. Since, the panchromatic image is captured at high spatial resolu-

tion and the multispectral images are captured at low spatial resolution, we use

panchromatic image to learn aliasing on the multispectral images.

� In many applications, the multiple observations of the image to be super-resolved are

not available. We propose a fast approach to the learning based single frame super-

resolution where only one observation is used to construction the super-resolution.

The learning based approaches for single frame super-resolution proposed in liter-

ature use a database consisting of high resolution images only. Low resolution and

high resolution image pairs are generated by down sampling the high resolution
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images. The correspondence between the spatial features in the observation and its

super-resolved version cannot be e�ectively learned from such database. We con-

struct a database consisting of the low resolution images and their high resolution

versions all captured using a real camera. We capture the images of a scene at dif-

ferent resolution by varying the zoom setting of the camera. These pairs of images

truly represents the spatial features correspondence across the varying resolutions.

We learn the spatial features of the super-resolved image from this database and

obtain the close approximate to the super-resolved image. As real images contain

smooth areas, textures and edges, they may not be e�ciently represented by homo-

geneous models. This motivates us to consider an inhomogeneous prior which can

adapt to the local structure of the image and provide a better reconstruction. We

use an inhomogeneous Gaussian MRF to represent the image �eld. It is adaptive

to the local structures in an image and eliminates the need for two separate priors

i.e. edge preserving prior and smoothness prior.

� We propose a new learning approach based on the discrete cosine transform (DCT)

and apply it to single frame super-resolution. The motivation behind this is that

the DCT is the basis of many popular video codec such as JPEG, H.263 and MPEG.

Consequently, the low resolution frame does not need to be decoded prior to super-

resolving a video. The advantage of the DCT over wavelet transform is that it

helps to preserve the edges in arbitrary directions unlike the wavelet transform that

captures discontinuities in limited directions only. We learn the high frequency

DCT coe�cients of the super-resolve image from the database and obtain the close

approximation to the super-resolution. In this experiment we employ nonhomoge-

neous AR model to represent the image �eld and alleviate the drawbacks of the

homogeneous models for the prior.

� Finally, we readdress the problem of zoom based super-resolution using the new

learning based approaches and particle swarm optimization (PSO) technique. We

obtain the close approximation of the super-resolved image by learning the details

from the database consisting of low resolution images and their high resolution ver-

sions. In order to preserve the edges, we incorporate discontinuity preserving prior

and arrive at non-convex cost function. The optimization of such cost function
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requires the computationally taxing tools such as simulated annealing. We employ

PSO technique for optimizing the non-convex cost function consisting of a data �t-

ting term and a discontinuity preserving prior term. We obtain the particles using

existing interpolation techniques as well as using the proposed learning based ap-

proaches. The e�ectiveness of the proposed approach is shown using mean squared

error as well as using another recently proposed measure called structural similarity

(SSIM) which is derived based on the human visual perceptual capability.

1.6 Organization of the Thesis

In this thesis, we address the problem of motion-free super-resolution using new learning

based approaches. We develop learning based techniques for super-resolution using zoom

cue as well as single frame super-resolution. We propose a technique to estimate the

aliasing on the low resolution observation and use the learnt aliasing in the forward

model. We develop new learning based techniques using discrete wavelet transform and

discrete cosine transform and obtain close approximation to the super-resolved image. We

solve the super-resolution problems using regularization based approaches and suggest

use of di�erent homogeneous and nonhomogeneous models for prior. We propose a novel

application of particle swarm optimization tool in the super-resolution problem. The

thesis is organized as follows.

Many researchers have attempted super-resolution problem using di�erent methodolo-

gies such as super-resolution using motion cue, motion-free super-resolution and example

based techniques. chapter 2 provides a review of the existing super-resolution approaches

proposed in literature.

In chapter 3, we address the problem of super-resolution using zoom cue. We suggest a

novel technique for estimating aliasing from the observations and obtain super-resolution

using MAP-MRF framework. In order to avoid the computational complexity of the

MRF model for prior, we use autoregressive model. Along with the aliasing we learn the

AR model parameters from the most zoomed observation and regularize the solution. We

further show the application of estimating aliasing on multispectral (MS) images in the

remotely sensed images.

We introduce a new learning technique based on the discrete wavelet transform (DWT)
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and propose a single frame super-resolution approach in chapter 4. We construct a new

database consisting of low resolution images and their high resolution versions and use it

to capture the relationship of spatial features among the images at di�erent resolutions.

We reconstruct the super-resolved image using an inhomogeneous Gaussian Markov ran-

dom �eld. We derive prior model parameters from the close approximation obtained

using the DWT based learning technique.

We describe the super-resolution technique for a single frame super-resolution using

non-homogeneous autoregressive prior in chapter 5. We develop a new learning technique

based on the DCT to obtain a close approximation to the super-resolution image and

obtain super-resolution using regularization framework.

In chapter 6, we readdress the zoom based super-resolution with discontinuity preserv-

ing MRF model prior and propose a novel and fast approach for super-resolution using

particle swarm optimization as a tool for minimizing non-convex cost function. In PSO,

the optimization process begins with many initial solutions known as particles. We obtain

these particles using di�erent techniques including the learning techniques based on the

DWT and the DCT. In this chapter, the quality of a super-resolved image is de�ned as

the similarity of the super-resolved image with the original high-resolution image. We

use structural similarity index and mean squared error to measure the quality of results.

Finally, we summarize our work and conclude in chapter 7. We discuss the further

challenges and directions for future research.





Chapter 2

Literature Review

Images captured using a camera having CCD or CMOS image sensors, provide good qual-

ity images. Although, these sensors are suitable for the most imaging applications, the

current resolution level will not satisfy future demand. The most direct solution to ob-

tain high resolution images is to increase the density of the photodetectors in the optical

sensor by improving the sensor manufacturing technique. However, due to hardware cost

and fabrication technological limitations, it is expensive and di�cult to acquire the image

with higher resolution than that with the current resolution level of the sensors. Thus

not possible to increase the current resolution level by improving hardware performance.

The magni�cation of an image captured with the current resolution level of the sensors

introduces visible artifacts. Resolution improvement by applying tools from digital signal

processing technique has, therefore, been a topic of very great interest [25, 26, 27, 28, 29].

Super-resolution (SR) is an algorithmic technique that produces an image or video with

a resolution higher than those of any of the input images or frames. Super-resolution has

attracted a growing interest as a purely computational means to increase imaging sensors

performance. The pioneer work of super-resolution reconstruction may go back to 1984 by

Tsai and Huang [30]. Since then a variety of approaches for solving the super-resolution

problem have been proposed [31, 32, 33]. The approaches include deterministic regular-

ization approaches, stochastic methods, nonuniform interpolation, projection onto convex

sets, iterative backprojection, adaptive �ltering and learning based approaches. The dif-

ference among these approaches is subject to what type of the reconstruction method

is used, which observation method is used, in which particular domain is used, how the

observations are captured and so on. We categorize SR reconstruction methods into three

17
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main divisions: motion based SR reconstruction, motion free super-resolution and single

frame super-resolution. Motion based technique use the relative motion between di�erent

low resolution observations as a cue in estimating the high resolution image, while motion

free super-resolution techniques may use cues such as blur, zoom, and defocus. Single

frame super-resolution approaches attempt to reconstruct the super-resolution using a

single low resolution observation. Since, only a single undersampled and degraded input

image is available, the task of obtaining a super-resolved image comprises of recovering

the additional spatial data from available database of high resolution images.

2.1 Motion Based SR Reconstruction

Motion based SR approaches obtain super-resolution from several subsampled and mis-

registerd low resolution images of the desired scene. The low resolution images can be

either obtained as a sequence taken over a time, or taken at the same time with di�erent

sensors. In particular, camera and scene motion lead to multiple observations containing

similar, but not identical information. Since, the observations have subpixel shifts and

are aliased, new information in each of the observations can be exploited to construct a

high resolution image. The most of the SR approaches proposed consist of three stages:

registration, nonuniform interpolation and restoration [34, 35, 36]. In the registration,

motions between observations are estimated with sub-pixel accuracy [37, 38, 39]. Accu-

rate estimation of motion is an important factor in the success of these approach. The

interpolation based approach is the most intuitive method for super-resolution. This

approach takes relatively low computational load and makes real time applications possi-

ble. However, since the errors at the interpolation process is not accounted for during the

de-convolution, it does not guarantee an optimal solution. Furthermore, this approach

applies only to the case when the blur and the noise e�ects are constant over the lower

resolution images. Hence, the use of degradation models is limited in this approach.

The frequency based approach reconstruct HR images using the aliasing in each of

the LR images. The relationship between LR images and the HR image is demonstrated

in the frequency domain. Frequency domain methods are based on three fundamen-

tal principles: i) the shifting property of the Fourier transform (FT), ii) the aliasing

relationship between the continuous Fourier transform (CFT) and the discrete Fourier
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transform (DFT), iii) the original scene is band-limited. These properties allow the for-

mulation of a system of equations relating the aliased DFT coe�cients of the observed

images to samples of the CFT of the unknown scene. These equations are solved yielding

the frequency domain coe�cients of the original scene, which may then be recovered by

inverse DFT. Formulation of the system of equations requires knowledge of the trans-

lational motion between frames to sub-pixel accuracy. Each observation image must

contribute independent equations, which places restrictions on the inter-frame motion

that contributes useful data. Tsai and Huang [30] assume that the desire HR image is

bandlimited and derive analytical relationship between observations and the desired HR

image. They obtain super-resolution using shifting property of the Fourier transform and

the aliasing relationship between continuous Fourier transform of HR image and the dis-

crete Fourier transform of the observed LR images. In [40], authors extend this approach

using weighted least squares formulation for blurred and noisy images having same blur

and noise characteristics. Other approaches using frequency domain techniques include

[41, 42, 43]. Approaching the super-resolution problem in the frequency domain makes

a lot of sense because it is relatively simple and computationally e�cient. The capa-

bility of parallel implementation of these techniques makes the hardware less complex.

However, there are some problems with a frequency domain formulation. It restricts

the inter-frame motion to be translational because the DFT assumes uniformly spaced

samples. The observation model is restricted only to global translational motion. An-

other disadvantage is that prior knowledge that might be used to constrain or regularize

the super-resolution problem is often di�cult to express in the frequency domain. In

other words, the frequency domain approach make it di�cult to apply spatial domain

prior for regularization. Since the super-resolution problem is fundamentally ill-posed,

incorporation of prior knowledge is essential to achieve good results.

A variety of techniques exist for the super-resolution problem in the spatial domain.

These solutions include interpolation, deterministic regularized techniques, stochastic

methods, iterative back projection, and projection onto convex sets among others. The

primary advantages to working in the spatial domain are support for unconstrained mo-

tion between frames and ease of incorporating prior knowledge into the solution. Non-

uniform interpolation approach maps pixels from the low-resolution images onto a com-

mon plane and then interpolate over a more �nely sampled grid to obtain a high resolution
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image. Unfortunately, this technique generally works very poorly because of the inherent

assumption that camera sensors do not act as impulse functions, but instead spatially

average the incident light across each pixel. Since the solution obtained using non-linear

interpolation lacks high frequency recovery, it looks only marginally better than bilinear

interpolation. Since there are limited number of observed images and ill-conditioned blur

operators, the super-resolution problem is an ill-posed inverse problem. When presented

with an ill-posed problem it becomes necessary to impose prior knowledge on the solu-

tion space in order to obtain a unique solution. Regularization procedures are adopted

to stabilize the inversion of ill-posed problems.

Reconstruction-based algorithms can be classi�ed in two categories: deterministic

approach and stochastic approach. Deterministic approach encodes knowledge of what

the highresolution image should look like as priors and regularize the solution using

constrained least squares method [44, 45, 46, 47]. The common approach is to impose a

smoothness prior via regularization on top of a least-squares optimization. The presence

of the regularization term guarantees a convex and di�erentiable optimization function.

Thus, a unique optimal solution can be computed using a number of standard methods

like gradient descent. The results of this approach are certainly an improvement over the

low-resolution image, but enforcing smoothness is not always the best option, especially

if other priors can be formulated that preserve high-frequency details better.

Stochastic methods which treat SR reconstruction as a statistical estimation problem

have rapidly gained prominence since they provide a powerful theoretical framework for

the inclusion of a-priori constraints necessary for satisfactory solution of the ill-posed SR

inverse problem. The statistical techniques explicitly handle prior information and noise.

Inclusion of prior knowledge is usually more natural using a stochastic approach. The

stochastic SR reconstruction using Bayesian approach provides a 
exible and convenient

way to model a priori knowledge about the �nal solution. This method can be applied

when a posteriori probability density function of the original image can be estimated.

The Maximum a posteriori (MAP) approach to estimating the super-resolution seeks the

estimate for which the a posteriori probability is a maximum. It is common to utilize

Markov random �eld (MRF) image models as the prior term. Under typical assumptions

of Gaussian noise the prior may be chosen to ensure a convex optimization enabling the

use of descent optimization procedures.
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Schultz and Stevenson propose SR reconstruction from LR video frames using MAP

technique [48]. They employ discontinuity preserving Huber-Markov Gibbs prior model

and use constrained optimization. The authors in [49] use the MAP framework for jointly

estimating the registration parameters and the high-resolution image from severely aliased

observations. They try to dealias the low resolution images by utilizing the phase di�er-

ence among the low resolution images. Elad and Feuer in [50] propose a uni�ed methodol-

ogy to super-resolve an image from several observations which are geometrically warped,

blurred, noisy and downsampled. They combine maximum likelihood, MAP and pro-

jection onto convex sets approaches. Capel and Zisserman [51] have employed fusion

of information from several planer views for mosaicing and super-resolution. Recently,

the authors in [52] propose a joint MAP formulation combining motion estimation, seg-

mentation, and super-resolution together. They solve the super-resolution problem by a

cyclic coordinate decent process that treats the motion and the segmentation �elds as

well as the HR image as unknowns and estimates them jointly using the available data.

In the letter [53], the authors present an approach to reconstruct high spatial-resolution

and high-dynamic-range images from multiple and di�erently exposed images simultane-

ously. They propose a stochastic super-resolution reconstruction algorithm that models

nonlinear camera response function, exposure time, sensor noise, and quantization error

in addition to spatial blurring and sampling. The authors in [54] propose a technique

to enhance license plate numbers of moving vehicles in real tra�c videos. They ob-

tain a high-resolution image of the number plate by fusing the information derived from

multiple, sub-pixel shifted, and noisy low-resolution observations. They model the super-

resolved image as a Markov random �eld and estimate it using a graduated non-convexity

optimization procedure. The article [55] reviews a variety of super-resolution methods.

Farsiu et al. [56] propose a uni�ed approach of demosaicing and super-resolution of set

of low resolution color images. They employ bilateral regularization of the luminance

term for reconstruction of sharp edges, and that of the chrominance term and intercolor

dependencies term to remove the color artifacts from the HR estimate. They use L1

norm for the data error term to make the method robust to errors in data and modeling.

The authors in [57] propose a 3D structure preserving super-resolution technique using

disparity map. Most common methods for color image super-resolution involve appli-

cation of super-resolution algorithm to each of the color components independently or
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transform the problem to a di�erent color space where chrominance layers are separated

from luminance and super-resolution is applied to luminance component only. The major

advantages of the stochastic approaches are robustness and 
exibility in modeling noise

characteristics, incorporation of priori knowledge of the solution in formulation, applica-

bility of the simple optimization technique with the assumption of white Gaussian noise

process and simultaneous estimation of motion and HR image �eld.

Set theoretic methods, especially the method of projection onto convex sets (POCS),

are popular as they are simple, utilize the powerful spatial domain observation model,

and allow convenient inclusion of a priori information. In set theoretic methods, the

space of SR solution images is intersected with a set of (typically convex) constraint

sets representing desirable SR image characteristics such as positivity, bounded energy,

�delity to data, smoothness etc., to yield a reduced solution space. POCS refers to an

iterative procedure which, given any point in the space SR images, locates a point which

satis�es all the convex constraint sets. Main problems with the POCS approach are non-

uniqueness of solution, di�culty in de�ning the projections onto convex sets, dependence

of the solution on the initial guess, slow convergence and high computational cost. POCS

reconstruction methods have been successfully applied to sophisticated observation and

degradation models [58, 59].

Irani and Peleg [60] proposed a super-resolution algorithm based on iterative back

projection (IBP). The key idea is that the error between the observed low-resolution

images and the corresponding low-resolution images formed using an estimate of the SR

image can be used to iteratively re�ne the estimated SR image. This approach begins

by guessing an initial HR image. This initial HR image can be generated from one of

the LR images by decimating the pixels. This initial HR image is then downsampled

to simulate the observed LR images. The simulated LR images is subtracted from the

observe LR images. If the initial HR image was the real observed HR image, then the

simulated LR images and the observed LR images would be identical and their di�erences

zero. Hence, the computed di�erences can be \back-projected"' to improve the initial

guess. The back-projecting process is repeated iteratively to minimize the di�erence

between the simulated and the observed LR images, and subsequently produce a better

HR image. While, iterative back projection is relatively easy to understand, the method

does not directly address the ill-conditioning of the problem and incorporation of a priori



2.2 Motion-free Super-resolution 23

constraints is di�cult.

The primary factor that controls the quality of the super-resolved image is the ex-

tremely precise alignment of the low-resolution frames. Park et al.[61] has shown by ex-

ample that small error in registration can considerably e�ect the super-resolution results.

Many researchers have proposed algorithms for registration of the images [62, 63, 64, 65].

A survey of di�erent registration methods is provided in [66]. Most of the registration

algorithms tend to be sensitive to illumination, blur variations and noise. The authors

in [67], propose registration algorithm that uses the local phase information, which is ro-

bust to the above degradations. They derive the theoretical error rate of the estimates in

presence of non-ideal band-pass behavior of the �lter and show that the error converges

to zero over iterations. Approaches that use frequency domain processing to compute

the registration parameters are relatively stable under various image artifacts. However,

they are limited in the class of transformations that can be estimated between two images

[64]. The registration algorithm in [65] deal with the illumination variation at the SR

phase and assumes accurate registration. Solutions that deal with registration error by

treating it as noise [68] during the SR phase, and a combined optimization of SR and

registration [49] have been tried. In [69], Suresh and Rajgopalan present a computa-

tionally e�cient method for super-resolution using a discontinuity adaptive MRF model

to provide robustness to errors in motion and blur estimates. A discontinuity adaptive

regularizer is proposed in which the degree of interaction between pixels across edges is

adjusted adaptively to preserve discontinuities.

2.2 Motion-free Super-resolution

All the above approaches use motion as a cue for solving the super-resolution problem.

These approaches require accurate registration between the low resolution observations.

Establishing a dense point correspondence among the observations is an important step

and a prerequisite for successful SR implementations. Any error in establishing the

correspondence among the observations a�ects the quality of super-resolution. It is a

di�cult and computationally taxing procedure. It is shown that the super-resolution

is also possible from the observations captured without relative motion between them.

There has been work on the spatial resolution enhancement by using cues which do not
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involve a motion among low resolution observations. The new approaches based on the

cues other than motion such as blur, defocus[70] and zoom[1, 71] are known as motion-free

super-resolution approaches. The authors in [72] describe an MAP-MRF based super-

resolution technique for SR reconstruction from several blurred and noisy low resolution

observations. In [73], the authors recover both the high-resolution scene intensity and the

depth �elds simultaneously using defocus cue. Rajagopalan and Kiran in [70] propose a

frequency domain approach for SR reconstruction using the defocus cue. They also show

that the estimation of the HR image improves as the relative blur increases.

In [74, 75] the authors show the estimation of super-resolved image and depth map

using photometric cue. They model the surface gradients and albedo as the Markov

random �elds and use line �elds for discontinuity preservation. Since they use simulated

annealing for minimization, the approach is computationally very taxing. Joshi and

Chaudhuri in [1] demonstrate the use of zoom cue for super-resolution. The obtain the

low resolution observation by varying the zoom setting of a camera and obtain super-

resolution using MAP-MRF framework. They also propose a learning based approach for

SR reconstruction from zoomed observations [76]. They represent the HR image using

MRF prior model and learn the model parameters from the observations. The authors in

[77] propose shape from focus method to super-resolve the focused image of 3D objects.

Using the observations in the shape from focus stack and the depth map of the object,

they reconstruct super-resolution by magni�cation factors of 2 or greater using a MAP-

MRF technique.

2.3 Single Frame Super-resolution

Multi-frame image super-resolution discussed in previous sections refers to the case where

multiple images of the scene are available. In general, changes in these low-resolution

images caused by camera or scene motion, camera zoom, focus and blur allow one to

recover extra data for reconstructing an output image at a resolution above the limits of

the original camera or other imaging device. The super-resolved output image captures

more of the original scenes details than any one of the input images was able to record.

Single frame super-resolution approaches attempt to obtain super-resolution using

a single observation. In comparison to the multiple image case, this problem is more
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severely underconstrained as less information about the scene is provided. Furthermore,

single frame super-resolution can be more general as it might include magnifying images

which do not have underlying ground truth. In this case, estimating sensor characteristics

might be less meaningful and the objective becomes the generation of visually plausible

images rather then reconstructing the underlying scene. Accordingly, for single frame

super-resolution, one has to inevitably rely on very strong prior information. This prior

information is available either in the explicit form of a distribution or energy functional

de�ned on the image class [78, 79, 80, 81, 82, 83], and/or in the implicit form of example

images which leads to example/learning-based super-resolution [84, 85, 86, 87, 88, 89].

A variety of linear and non-linear tools are available which try to address the problem

of single frame super-resolution. A detailed mathematical analysis of regularization based

schemes has been provided by Malgouyres and Guichard in [90]. The authors in [91]

provide an interpolation method under the total variation regularization scheme. In their

paper they start o� with a higher resolution image formed by zero-padded interpolation of

the LR image. A constrained gradient descent algorithm is presented where the authors

minimize the gradient energy of the image which conforms to a linear smoothing and

sampling process. The use of TV for super-resolution has also been demonstrated by Aly

and Dubois in [92]. In their method they modify the data �delity term to closely model the

assumed image acquisition model. Their iterative algorithm then makes use of the back

projection technique introduced by Irani and Peleg [60] for data �delity in a regularization

framework. The authors then present an algorithm that converges to a unique solution

irrespective of the starting interpolated image. However, the resultant image depends

upon the choice of the image formation model. The dependence of the result on the

selection of the proper mathematical model that captures the downsampling process for

such regularization based methods has been discussed in [93]. Other approaches using

TV for super-resolution are presented in [94]. Jiji et al. in [95] propose an interpolation

technique where the aliasing present in the LR image is used. They assume knowledge

of the bandwidth and the amount of aliasing in a given observation and use a signal

processing approach to perform super-resolution. Vandewalle et al. [96, 97, 98, 99] have

proposed a fast super-resolution reconstruction based on a nonuniform interpolation using

a frequency domain registration. This method has low computation and can be used in

the real-time system but the degradation models are limited therefore this algorithm can
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apply on few applications.

Because the richness of real-world images is di�cult to capture analytically, researchers

are exploring a learning-based approach for super-resolving images. Given a training set,

the learning based algorithm learns the �ne details that correspond to di�erent image

regions seen at a low-resolution and then uses those learned relationships to predict �ne

details in other images. A number of learning-based SR algorithms have been studied in

[85, 89, 100, 101, 102, 103, 84, 104, 105, 3]. These algorithms use a learning scheme to

capture the high-frequency details by determining the correspondence between LR and

HR training images. Compared to traditional methods, which basically process images at

the signal level, learning-based SR algorithms incorporate application dependent priors

to infer the unknown high resolution image. The input LR image is split into either

overlapping or non-overlapping patches. Then, for each LR patch from the input image,

either one best-matched patch or a set of the best-matched LR patches is selected from

the training set. The corresponding HR patches are used to reconstruct the output HR

image.

Freeman et al. [85] propose an example based super-resolution technique. They esti-

mate missing high-frequency details by interpolating the input low-resolution image into

the desired scale and then search the high spatial frequency patches from the database.

They embed two matching conditions into a Markov network. One is that the LR patch

from the training set should be similar to the input observed patch, while the other con-

dition is that the contents of the corresponding HR patch should be consistent with its

neighbors. The super-resolution is performed by the nearest neighbor based estimation

of high-frequency patches based on the corresponding patches of input low-frequency

image. The authors in [106] present a learning based approach to recognize digits of

the vehicle registration plates. They super-resolve and restore the image patches using

undirected graphical model. The learning-based image hallucination technique is pro-

posed in [107]. Here the authors use primal sketch priors for primitive layers (edges and

junctions) and employ patch-based learning using large image database. In [105], Baker

and Kanade proposed a hallucination technique based on the recognition of generic local

features. These local features are then used to predict a recognition-based prior rather

than a smoothness prior as is the case with most of the super-resolution techniques.

The authors in [108] present a learning-based method to super-resolve face images using
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a kernel principal component analysis (PCA) based prior model. They regularize the

solution using prior probability based on the energy lying outside the span of princi-

pal components identi�ed in a higher-dimensional feature space. Ni and Nguyen utilize

support vector regression (SVR) in the frequency domain and pose the super-resolution

problem as a kernel learning problem [109]. The drawback of SVR is that it increases

the computational complexity. Based on the framework of Freeman et al. [84], Kim and

Kwon investigate a regression-based approach for single-image super-resolution [4]. Here

the authors generate a set of candidates for each pixel using patch-wise regression and

combine them based on the estimated con�dence for each pixel. In the post processing

step, they employ regularization technique using discontinuity preserving prior. Brandi

et al. [110] propose an example-based approach for video super-resolution. They restore

the high-frequency information of an interpolated block by searching in a database for a

similar block, and by adding the high frequency of the chosen block to the interpolated

one. A novel method with manifold learning is proposed in [111]. In this paper, neighbor

embedding with training images is adopted to recover the super-resolution image. One

disadvantage of the approach is that the recovery of super-resolution image is easily af-

fected by the training image which needs to be selected within related contents manually.

Based on Super-Resolution through Neighbor Embedding algorithm Chang and Zhang

[112] propose an improved super-resolution approach to choose more reasonable training

images using histogram matching. Jia et al. combined the robust global models for a

face space with the local ones for recovering image details to get a generalized face super-

resolution [113]. Karl et al. used support vector regression to learn the relationship of

DCT coe�cients between the low- and high-resolution images [114].

It is reasonable to assume an edge smoothness prior without any other prior knowledge

on the image. This prior is also consistent with human perception, which seems to also

favor smooth curves in natural images. Based on this assumption, a lot of algorithms

have been proposed to obtain smooth edges. Various techniques are investigated in the

literature to obtain smooth image boundaries, such as level-set [115], multiscale tensor

voting [116], and snake-based vectorization [117] techniques. An edge smoothness prior

is favored since it is able to suppress the jagged edge artifact e�ectively. However, it

is di�cult to obtain analytical forms for evaluating the smoothness of the soft edges

with gradual intensity transitions. The authors in [118] propose soft edge smoothness
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measure that can approximate the average length of all level lines in an intensity image

and use it as a prior. They obtain super-resolution using a novel combination of this soft

edge smoothness prior and the alpha matting technique for color image SR by adaptively

normalizing image edges according to their alpha-channel description. By introducing the

soft edge smoothness prior, Dai et al. combined it with alpha matting technique for color

image super-resolution [80]. Wei and Yeung [119] proposed an image hallucination using

neighbor embedding over visual primitive manifolds. In their method, the maximum �lter

responses are extracted as features. In [120] authors propose a Neighbor embedding based

super-resolution through edge detection and Feature Selection (NeedFS). They propose

a combination of appropriate features for preserving edges as well as smoothing the color

regions. The training patches are learned with di�erent neighborhood sizes depending

on edge detection. In [121], the authors address the problem of super-resolution from a

single image using multi-scale tensor voting framework. They consider simultaneously all

the three color channels to produce a multi-scale edge representation to guide the process

of high-resolution color image reconstruction, which is subjected to the back projection

constraint. Liu and Shum [122] present a two-step hybrid approach for super-resolving

face image by combining Freeman's image primitive technique [85] and PCA model-

based approach. They propose a global parametric model called \global face image"

carrying the common facial properties and a local nonparametric model called \local

feature image" that records the local individualities. The high resolution face image

is obtained by composition of the global face image and the local feature image. The

disadvantage of all the above approaches is that they either obtain the LR images in the

database by downsampling the high resolution images i.e., simulate the LR images or use

an interpolated version of the LR image while searching. Such a database do not represent

the true spatial features relationship between LR-HR pairs as they do not correspond to

the images captured by a real camera. Edge-preserving regularization terms [123, 78, 124]

are designed to address the over-smoothness problem at image boundaries. Jiji et al.

demonstrate super-resolution of a single frame gray scale image using a training database

consisting of high resolution images downloaded from the internet [3]. They learn the

high frequency details of the SR image from the database and obtain regularized solution

by employing Markov Random Field prior model and a wavelet prior in order to preserve

edges. PCA based approaches for super-resolving face images are presented in [125, 126].
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The super-resolution reconstruction is one of the most spot lighted research area

and is now quite matured problem. Several journals have published special issues on

various approaches for multi-frame resolution and single frame super-resolution [127, 128,

129, 130, 131, 132, 133]. Similarly many books are published on the super-resolution

techniques [134, 135, 136].





Chapter 3

Decimation Estimation and

Super-resolution Using Zoom Based

Approach

A high-resolution image is indispensable in many applications including health diagnosis

and monitoring, military surveillance, and terrain mapping by remote sensing. Due to

hardware cost, size, and fabrication complexity limitations, imaging systems like charge-

coupled device (CCD) detector arrays often provide only multiple low resolution degraded

images. The distortions are introduces in an image due to undersampling and loss of high

frequency details due to various reasons such as outof focus optical blurring, sensor blur.

The resolution enhancement from a single observation using image interpolation is of

limited application because of the aliasing present in the low resolution image. Super-

resolution refers to the process of producing a high spatial resolution image from several

low-resolution observations. Super-resolution algorithms attempt to reconstruct high res-

olution image by predicting the missing high frequency details. In order to predict the

missing information of the high resolution image, one needs non-redundant information

from the observations. In zoom based super-resolution approach, the multiple observa-

tions captured by varying the zoom setting of a digital camera are used to extract the

missing information of the super-resolved image.

In this chapter, we propose a method for estimating the aliasing from the zoomed

observations and use the same for super-resolving the least zoomed observation consisting

31
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of the entire scene at the resolution of the most zoomed observation. We then show the

application of the proposed technique of estimating decimation to the multiresolution

fusion of the multi-spectral images and panchromatic images in remote sensing. We

estimate the decimation from the panchromatic image and use it to obtain high resolution

for multispectral images.

3.1 Decimation and its Estimation

In the process of capturing an image of a scene using a real camera, the high resolution

image goes through a sequence of degradations, including a blur, down-sampling, and

additive noise. Hence the observed images are degraded versions of the high resolution

images. In order to analyze the super-resolution reconstruction problem, it is required

to formulate a mathematical model that represents the image acquisition process. This

model, known as observation or forward model, relates the original high resolution image

to the observed low resolution images.

The most commonly used image formation models for super-resolution reconstruction

incorporate warping, blur, aliasing and noise in the formulation. Let the observed image

Y be of size M �M pixels and y be the lexicographically ordered vector of size M2 � 1,

which contains the pixels from image Y . Similarly, let z be an HR image. The general

forward model can be given as [61],

y = DHWz+ n; (3.1)

where W is a warping matrix, H is a blur matrix, D is a decimation matrix. The

decimation matrix D takes care of aliasing. For an integer decimation factor of q, the

decimation matrix D consists of q2 non-zero elements along each row at appropriate

locations. Here n is the independent and identically distributed (i.i.d.) noise vector with

zero mean and variance �2n. It has same size as y. The LR image formed through above

process will, in general, be aliased.

The decimation process relates to the fact that the low resolution data is due to the

integration of light falling on the photosensor array of suitable area compared to the

desired high resolution images. In literature, a simple model for decimation (aliasing)
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is used. Generally the decimation model to obtain the aliased pixel intensities from the

high resolution pixels has the form [48],

D =
1

q2

0
BBBBBB@

1 1 : : : 1 0

1 1 : : : 1

0 1 1 : : : 1

1
CCCCCCA
: (3.2)

As an example, consider an observation of size 2 � 2. For the decimation factor of

q = 2, the size of z becomes 4 � 4. z can be represented as lexicographically ordered

vector having 16 elements. The Decimation matrix D is of size 4 � 16 and it can be

expressed with reordering of z as,

D =
1

4

0
BBBBBB@

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1
CCCCCCA
: (3.3)

In other words the aliased pixel intensity at a location (i; j) of a low resolution image for

a zoom factor of q = 2 is given by,

y(i; j) =
1

4
z(2i; 2j) +

1

4
z(2i; 2j + 1) +

1

4
z(2i+ 1; 2j) +

1

4
z(2i+ 1; 2j + 1) + n(i; j): (3.4)

Here (2i; 2j); (2i; 2j+1); (2i+1; 2j) and (2i+1; 2j+1) are corresponding 4 pixel locations

in the higher resolution image and n(i; j) is the noise at the pixel (i; j). The decimation

matrix in equation (3.2) indicates that a low resolution pixel intensity y(i; j) is obtained

by averaging the intensities of q2 pixels corresponding to the same scene in the high

resolution image and adding noise intensity n(i; j) (refer to equation (3.1)). In other

words, all q2 high resolution intensities are weighted equally by 1
q2
(1
4
for q = 2) to obtain

the distorted or aliased pixel.

3.1.1 Proposed Decimation Model

The decimation model in equation (3.2) simulates the integration of light intensity that

falls on the high resolution detector. This assumes that the entire area of a pixel acts
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as the light sensing area and there is no space in the pixel area for wiring or insulation.

In other words, �ll factor for the CCD array is unity. However, in practice, the observed

intensity at a pixel captured due to low resolution sampling depends on various factors

such as camera gain, illumination condition, zoom factor, noise etc. The aliased low

resolution pixel intensity of an image point cannot always be an equally weighted sum of

the high resolution intensities and hence it has to be estimated.

The decimation matrix of the form shown in equation (3.2), can now be modi�ed as

[137],

D =

0
BBBBBB@

a1 a2 : : : aq2 0

a1 a2 : : : aq2

0 a1 a2 : : : aq2

1
CCCCCCA
; (3.5)

where jaij � 1; i = 1; 2; : : : q2. The decimation matrix D for the considered example of

2� 2 observation can be expressed with reordering of z as,

D =

0
BBBBBB@

a1 a2 a3 a4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 a1 a2 a3 a4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 a1 a2 a3 a4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a1 a2 a3 a4

1
CCCCCCA
: (3.6)

The aliased pixel intensity at a location (i; j) for a zoom factor of q = 2 is now given by,

y(i; j) = a1z(2i; 2j)+ a2z(2i; 2j+1)+ a3z(2i+1; 2j)+ a4z(2i+1; 2j+1)+n(i; j): (3.7)

When we use equation (3.2) each of the ai has a value of 1
q2
. However, in the above

equation the estimates of ai are obtained using the most zoomed observation and corre-

sponding portions in the other LR observations. Thus the estimated ai are more accurate

as compared to using ai =
1
q2

in equation (3.2) and are closer to the true values for the

chosen model.
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Y1 Y2

Figure 3.1: Two images of a scene, captured with di�erent integer zoom settings. The
zoom factor between Y1 and Y2 is 2.

3.1.2 Least Squares Approach for Decimation Estimation

In [138], authors discuss the spatial interaction model and choice of neighbors and use the

same for texture synthesis. They model every pixel in an image as a linear combination

of neighboring pixels considering neighborhood system. They obtain the initial estimate

the model parameters using the Least Squares (LS) estimation approach. In this work,

we use their approach for estimating the weights in decimation matrix.

Let Y1 and Y2 be two images of a scene captured using di�erent zoom settings. Assume

that Y1 is a low resolution image and Y2 is the high resolution image and zoom factor be-

tween these two images is 2 (see Figure 3.1). A pixel at site s = (i; j) in the low resolution

image Y1 corresponds to a 2� 2 block of 4 pixels at sites fshr = (2i+ k; 2j +m)k=1;m=1
k=0;m=0g

in the high resolution image Y2. The vector of the decimation weights a can be estimated

in the Least squares sense using,

a =
hX
s2Y1

y2(shr)y2(shr)
T
i�1�X

s2Y1

y2(shr)y1(s)
�
; (3.8)

where y2(shr) is a vector representation of the high resolution pixels at sites shr that

correspond to a low resolution pixel y1(s) at site s. The pseudocode of the proposed

technique of decimation estimation for q = 2 is given in Algorithm 3.1.

The estimates of ai are obtained using the HR observation and LR observation. Thus

the estimated ai are more accurate as compared to using ai =
1
q2

in equation (3.2) and

are closer to the true values for the chosen model. It may be noted that this form of

decimation matrix D implicitly contains moving average (space invariant) blur in the

downsampling process.

We now present the application of the decimation estimation to the zoom based super-
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Algorithm 3.1: Decimation Estimation for q = 2

Data: a high resolution image Y2 and its low resolution version Y1
Result: decimation weight vector a = [a1 a2 a3 a4]
initialize S = [0 0 0 0];
initialize U = [0 0 0 0]T ;
foreach pixel (i; j) in the LR image Y1 do

let Zs = [y2(2i; 2j); y2(2i; 2j + 1); y2(2i+ 1; 2j); y2(2i+ 1; 2j + 1)];
calculate Z = Zs � Zs

T ;
calculate Y = Zs � y1(i; j);
S = S + Z;
U = U + Y ;

end

a = S�1U ;

resolution where the multiple observations are obtained by varying the zoom setting of a

digital camera. Decimation is estimated using LR observation and corresponding part in

the most zoomed observation. We obtain super-resolution using regularization framework.

A prior is introduced to avoid solutions which are subjectively very implausible to the

human viewer. We employ the Maximum a Posteriori approach, considering general

image priors commonly selected for image super-resolution. We then show the application

to the fusion in the remotely sensed images. In this case the decimation is estimated using

available Panchromatic image and low resolution MS image.

3.2 Zoom Based Super-resolution Using Decimation

Estimation

In [1], the authors propose a technique for super-resolution using zoom cue. The authors

capture the observations of a static scene at di�erent zoom factors by varying the zoom

setting of a digital camera. When one captures the images with di�erent zoom settings,

the amount of aliasing is di�erent in di�erently zoomed observations. This is because the

least zoomed entire area of the scene is represented by a very limited number of pixels,

i.e., it is sampled with a very low sampling rate and the most zoomed image with a higher

sampling frequency. Therefore, larger scene coverage will have lower resolution with more

aliasing e�ect. By varying the zoom level, one observes the scene at di�erent levels of

aliasing and blurring. Thus, one can use zoom as a cue for generating high-resolution

images at the lesser zoomed area of a scene. They model the super-resolution image as
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a Markov random �eld and use a MAP estimation method to derive cost function. They

optimize the cost function using a gradient descent technique and obtain super-resolution.

In this method they use a simpli�ed decimation model of the form in equation (3.2) for

low resolution observations formulation. The intensity of a low resolution pixel intensity

is represented as an average of intensities of corresponding pixels in the high resolution

image. Since, the observed intensity at a pixel captured due to low resolution sampling

depends on various factors such as camera gain, illumination condition, zoom factor, noise

etc., the aliasing has to be estimated. We propose the use of decimation estimation and

obtain super-resolution. The super-resolution image is modeled as an MRF. It is assumed

that the high resolution image at the most zoom setting is super-resolved. We propose

to estimate the decimation (aliasing) matrices from the most zoomed observation and

lesser zoomed observation. We then use MAP-MRF formulation to obtain super-resolved

image for the entire scene.

3.3 Problem Formulation

The zoom based super-resolution problem can be cast in a restoration framework. There

are p observed images Yi, i = 1; : : : ; p, each captured with di�erent zoom setting and

are of size M1 �M2 pixels each. Figure 3.2 illustrates the block schematic of how the

low-resolution observations of a scene at di�erent zoom settings are related to the high-

resolution image. Here we consider that the most zoomed observed image of the scene Yp

q
2

q
1
q
2

Z Y1 Y2 Y3

Figure 3.2: Illustration of observations at di�erent zoom levels, Y1 corresponds to the
least zoomed and Y3 to the most zoomed images. Here Z is the high resolution image of
the scene.
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(p = 3) has the highest spatial resolution. We are assuming that there is no rotation about

the optical axis between the observed images taken at di�erent zooms. Since di�erent

zoom settings give rise to di�erent resolutions, the least zoomed scene corresponding

to entire scene needs to be upsampled to the size of (q1q2 : : : qp�1) � (M1 �M2) pixels

(= N1�N2 pixels), where q1, q2; : : : ; qp�1 are the corresponding zoom factors between two

successively observed images of the scene Y1Y2, Y2Y3, : : :, Yp�1Yp respectively. Given Yp,

the remaining (p� 1) observed images are then modeled as decimated and noisy versions

of this single high-resolution image of the appropriate region in the scene. The most

zoomed observed image will have no decimation. The low resolution image observation

model is shown in Figure 3.3.

z(k,l)

q
1
q
2

Zoom Out

q
2

2

1

n (k,l)

View 
Cropping

2R  (.)

3R  (.)

y (k,l)
Zoom Out

1
n (k,l)

n (k,l)

View 
Cropping

2
y (k,l)

3

3y (k,l)

Figure 3.3: Low-resolution image formation model for three di�erent zoom levels [1].
View cropping block just crops the relevant part of the high resolution image Z as the
�eld of view shrinks with zooming.

Let ym represent the lexicographically ordered vector of sizeM1M2�1, which contains

the pixels from di�erently zoomed images Ym and z be the super-resolved image. The

observed images can be modeled as,

ym = DmCm(z� z�m) + nm; m = 1; � � � ; p; (3.9)

where D is the decimation matrix which takes care of aliasing present while zooming.
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The subscript m in D denotes that the amount of decimation depends on the amount of

zoom for mth observation, size of which depends on the zoom factor. Cm is a cropping

operator with z�m = z(x � �mx
; y � �my

) and �m = (�mx
; �my

) representing the lateral

shift of the optical shift during zooming process for the mth observation. The cropping

operation is analogous to a characteristic function which crop outs the bq1q2 : : : qm�1N1c�
bq1q2 : : : qm�1N2c pixel area from the high resolution image z at an appropriate position.

nm is the i.i.d noise vector with zero mean and variance �2n. It is of the size, M1M2 � 1.

For an integer zoom factor of q, the decimation matrix D consists of q2 non-zero elements

along each row at appropriate locations.

The multivariate noise probability density is given by,

P (nm) =
1

(2��2n)
M1M2

2

e
� 1

2�2n
n
T
mnm : (3.10)

Our problem is to estimate z given yms, which is an ill-posed inverse problem. It may

be mentioned here that the observations captured are not blurred. In other words, we

assume identity matrix for blur. The inherent di�culty with inverse problems is the

challenge of inverting the forward model. There exist many expanded images which

satisfy the equation (3.10). Regularization plays a vital role in stabilizing such problems

by introducing constraints on the solution that restricts the solution space and makes

the problem better-posed. Stochastic approach, typically Bayesian approach provides a


exible and convenient way to model a priori knowledge about the super-resolved image.

We model the scene in such a way that the model parameters can be used as priors

for obtaining regularized solution. First we estimate the decimation matrices using the

procedure described in section 3.1. Since we capture the images at di�erent resolutions

using zoom camera and the most zoomed image is assumed to be alias free, we estimate

the decimation matrix entries from the most zoomed region. These entries are obtained

by considering the most zoomed image and corresponding portion in the lesser zoomed

images. We estimate 4 weights for a zoom factor of 2 and 16 for a zoom factor of 4. The

estimated weight vectors are then used in equation (3.9) for forming D matrix to get the

observation model. It may be noted that for a given zoom factor, we are not estimating

di�erent weights for each location. Since the average brightness of each observation

varies due to AGC of camera, we used mean correction to maintain average brightness
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of the captured images approximately the same and use these observations for the D

matrix estimation as well as for experimentation. Mean correction for Y2 is obtained by

subtracting it's mean from each of its pixel and adding the mean of corresponding portion

in Y1. Similarly, for Y3, it is obtained by subtracting from each pixel, its mean and adding

the mean of corresponding portion in Y1. (Refer to Figure 3.2.) We represent the high

resolution image �eld using the linear models and optimize the cost function to obtain

the solution.

3.4 Image Field Modeling

In order to obtain a robust solution of the problem using regularization, a good assump-

tion about the nature of true image is required. Images contain random changes and

noise. Hence they are statistical in nature. It is convenient to regard an image as a

sample of a stochastic process. Desired information about an image like image content,

redundancy can be extracted using probability distributions and correlation functions.

The obvious fact about the natural images is that the neighboring pixels in an image

are highly dependent of each other. This dependence can be described either by means

of a correlation function or a power spectral density or by means of Markov model. In

the Markov model approach the relation between di�erent image pixels is described by

Markov random �elds.

3.4.1 MRF Prior Model for the Super-resolved Image

The MRF provides a convenient and consistent way of modeling context dependent enti-

ties. This is achieved through characterizing mutual in
uence among such entities using

conditional probabilities for a given neighborhood [139]. The practical use of MRF mod-

els is largely ascribed to the equivalence between the MRF and the Gibbs Random Fields

(GRF). We assume that the high-resolution image can be represented by an MRF. This

is justi�ed because the changes in intensities in a scene is gradual and hence there is a

local dependency.

Let Z be a random �eld over an regular N�N lattice of sites L = f(i; j)j1 < i; j < Ng.
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From the Hammersley-Cli�ord theorem for MRF-GRF equivalence, we have,

P (Z = z) =
1

Zp

e�U(z); (3.11)

where z is a realization of Z, Zp is a partition function given by Zp =
P

z e
�U(z) and U(z)

is energy function given by U(z) =
P

c2C Vc(z). Vc(z) denotes the potential function of

clique c and C is the set of all cliques. The lexicographically ordered high resolution

image z satisfying Gibbs density function is now written as,

P (z) =
1

Zp

e�
P

c2C Vc(z): (3.12)

We consider pair wise cliques on a �rst-order neighborhoods consisting of the four

nearest neighbors for each pixel and impose a quadratic cost which is a function of �nite

di�erence approximations of the �rst order derivative at each pixel location. i.e.,

X
c2C

Vc(z) = �
N1X
k=1

N2X
l=1

�
(zk;l � zk;l�1)

2 + (zk;l � zk�1;l)
2
�
; (3.13)

where � represents the penalty for departure from the smoothness in z.

3.4.2 The Autoregressive (AR) Model

In previous section, we formulated regularization framework using Markov random �eld

model prior. Although MRF model for prior captures the spatial dependencies very well,

the computational complexities with these models is very high. The estimation of true

parameters needs the computation of partition function. Further, it requires the use of

computationally taxing stochastic relaxation technique for obtaining global minima. This

motivates use to consider a di�erent model for prior that is computationally less intensive.

Recently, Auto-regressive (AR) models have attracted a lot attention of image/video

applications. The AR model is an e�cient and compact description of random process. It

is able to have desirable performance for the linear prediction [140]. Authors in [141, 138]

propose a multiresolution autoregressive model for the image and use the extracted pa-

rameters for texture classi�cation and image segmentation. In [142], the authors propose

a model-based approach to multiresolution fusion in remotely sensed images. They utilize
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the spatial correlation of each of the high resolution multispectral channels by using an

AR model.

An autoregressive (AR) model is a way of characterizing a single, stationary dynamical

regime, for which much of the methodology was set out by Box and Jenkins [143]. It is

based on the idea that the value yt of a series can be explained in terms of the preceding

values yt�p; : : : ; yt�1. It is therefore a regression based on the variables own history rather

than on any external variables. The current value of a series is dependent on the previous

p values. The resulting series is referred as an AR(p) process. The scalar AR(p) model

is described by the equation,

yt � � =

pX
k=1

�k(yt�k � �) + nt; (3.14)

in which nt is white noise with variance �2n, and � is the mean of the process. The values

of the �k's and the variance �
2
n characterize the behavior of the process. A useful property

of autoregressive processes is that they can approximate any power spectrum to within

an arbitrary accuracy, given a high enough autoregression order p.

In this section, we propose the use of autoregressive model for the problem of zoom

based super-resolution. We assume a linear dependency of a pixel to its neighbors in

a high spatial resolution image and represent it with an AR model. We exploits the

available most zoomed observation to learn the spatial relationships for the unknown

high resolution images using an AR structure. The parameters of the prior model are

unknown as the true high resolution image is unavailable and have to be estimated. To

solve this ambiguity, we propose to use the available most zoomed observation for the

learning of the parameter values, so that they can be used to improve the solution. The

AR parameters learnt from the most zoomed observation are used as the AR parameters

for the super-resolved image in order to enhance its spatial resolution. Thus we use a

homogeneous model and derive a set of parameters for the entire image. Once we estimate

the values of the AR model parameters, we use them for the super-resolving the least

zoomed image.

Let z(s) be the gray level value of the image pixel at site s = (i; j) in an M1 �M2

lattice, where i = 1; 2; � � �M1 and j = 1; 2; � � �M2: The AR model for z(s) can be expressed
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as [138],

z(s) =
X
r2 Ns

�(r)z(s+ r) +
p
�n(s); (3.15)

where Ns is the neighborhood of pixel at s. The �(r), r being a neighborhood index

with r 2 Ns, and � are unknown parameters, and n(:) is an i.i.d noise sequence with

zero mean and unit variance. Here � is the variance of the white noise that generates the

speci�ed data for the given AR parameters. It is worth noting that an MRF model can

represent a large variety of spatial inter-relationship among pixels locally, out of which

the AR model is only a subset representing linear dependencies. We use a third order

neighborhood that requires a total of 8 parameters � (Refer Figure 3.4). We estimate the

X(0,0) X(0,1) X(0,2) X(0,3) X(0,4)(0,1)

X(1,0) X(1,1) X(1,2) X(1,3) X(1,4)

(3,0) (3,1) (3,2) (3,3) (3,4)X X X X X

(2,0) (2,1) (2,2) (2,3) (2,4)X X XX X

(4,0) (4,1) (4,2) (4,3) (4,4)X XX XX

Figure 3.4: Third order neighborhood for the pixel located at (2; 2). Shaded pixels are
the neighboring pixels of the pixel at location (2; 2).

AR model parameters by considering the image as a �nite lattice model using the scheme

described in section 3.4.3. We use,

X
s=i;j

 
zm(s)�

X
r2Ns

�(r)zm(s+ r)

!2

; (3.16)

as a prior term in cost function.

3.4.3 Estimation of AR Model Parameters

Let y(s) be the gray level value of the image pixel at site s = (i; j) in an image Y and

Ns be the neighborhood of pixel at s. The vector of the neighboring pixels at site s can
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be represented using yr, r being a neighborhood index with r 2 Ns. The AR model

parameter vector � for the image Y can be computed using,

� =
hX
s2Y

yry
T
r

i�1�X
s2Y

yry(s)
�
; (3.17)

The pseudocode of the method of AR parameter estimation for third order neighbor-

hood is given in Algorithm 3.2.

Algorithm 3.2: AR model parameter estimation for third order neighborhood.

Data: an image Y
Result: AR model parameter vector �=[�1 �2 : : : �8]
initialize S = [0 0 0 0 0 0 0 0];
initialize U = [0 0 0 0 0 0 0 0]T ;
foreach pixel (i; j) in the image Y do

let yr = [y(i� 1; j � 1); y(i� 1; j); y(i� 1; j + 1); y(i; j � 1); y(i; j + 1); y(i+
1; j � 1); y(i+ 1; j); y(i+ 1; j + 1)];
calculate Z = yr � yr

T ;
calculate X = yr � y(i; j);
S = S + Z;
U = U +X;

end

�=S�1U ;

3.5 Super-resolving the Scene

The problem of reconstructing the high resolution image is an ill-posed inverse problem

and some form of regularization is necessary. We derive an optimal estimate of the HR

image as the MAP estimate. The MAP framework allows us to impose a priori constraints

on the HR image. Since statistical models can encode contextual constraints in images

in a natural way, we consider Markov random �eld model and AR model for the original

HR image.

3.5.1 Super-resolution Using MAP-MRF Estimation

The MAP estimate of the super-resolution image comes about by an application of Bayes

theorem,

P (zjy) = P (yjz)P (z)
P (y)

: (3.18)
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The left hand side is known as the posterior distribution over z and y represents observed

data. If is held constant, then P (y) may be considered as a normalization constant. We

apply this to our problem. Given the ensemble of images yi, i = 1 to p, at di�erent

resolutions, the MAP estimate ẑ, using Bayesian rule, is given by,

ẑ =
argmax

z

P (zjy1;y2; � � � ;yp) =
argmax

z

P (y1;y2; � � � ;ypjz)P (z): (3.19)

Taking the log of the posterior probability we can write,

ẑ =
argmax

z

h pX
m=1

logP (ymjz) + logP (z)
i
; (3.20)

since nm are independent. The above MAP formulation allows us to incorporate prior

knowledge about z for improving robustness during reconstruction.

Now using equation (3.9) and (3.10), we get,

P (ymjz) =
1

(2��2n)
M1M2

2

e
�
kym�DmCm(z�z�m )k2

2�2n : (3.21)

The �nal cost function is obtained as,

ẑ =
argmin

z

h pX
m=1

kym �DmCm(z� z�m)k2
2�2n

+
X
c2C

Vc(z)
i
: (3.22)

The above cost function is convex and is minimized using the gradient descent tech-

nique. The initial estimate z(0) is obtained as follows. Pixels in the zero order hold of

the least zoomed observation corresponding to the entire scene is replaced successively

at appropriate places with zero order hold of the other observed images with increasing

zoom factors. Finally, the most zoomed observed image with the highest resolution is

copied at the appropriate location (see Figure 3.2.) with no interpolation.

3.5.2 Super-resolution Using AR Model

Having de�ned the AR prior, we use the MAP estimator to restore the high-resolution

�eld z. Given the ensemble of images yi, i = 1 to p, at di�erent resolutions, the MAP
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estimate ẑ, using Bayesian rule, is given by,

ẑ =
argmax

z

P (zjy1;y2; � � � ;yp) =
argmax

z

P (y1;y2; � � � ;ypjz)P (z): (3.23)

From this, the cost function is derived as,

ẑ =
argmin

z

h pX
m=1

kym �DmCm(z� z�m)k2
2�2n

+
X
i;j

 
zm(s)�

X
r2Ns

�(r)zm(s+ r)

!2 i
:

(3.24)

The above cost function is convex and is minimized using the gradient descent technique.

3.6 Experimental Results

In this section, we present the results of the proposed method of obtaining super-resolution

using decimation estimation. All the experiments were conducted on real images taken by

a zoom camera and known integer zoom factors. It assumed that the lateral shift during

zooming is known. In each experiment, we consider three low resolution observations

Y1; Y2; Y3 of an image. Each observed image is of size 72 � 96. Zoom factor q between

Y1 and Y2 is 2 and that between Y1 and Y3 is 4. The super-resolved images for the entire

scene are of size 288� 384.

First, we estimate decimation matrices D1 and D2 using observations. We use obser-

vations Y1 and Y3 to estimate D1 and use Y2 and Y3 for estimating D2. The observation

Y3 is captured at the highest resolution and our aim is to super-resolve the observation

Y1 at the resolution of Y3. The centermost 18�24 region in the observation Y1 represents

the observation Y3. Figure 3.6(a) shows the highlighted region of Y1, which is used for

estimation of D1. Each pixel in this region corresponds to a 4� 4 block in Y3. Since Y3 is

available at the highest resolution, the decimation matrix D1 is estimated using Y3 and

the centermost 18�24 region in Y1. It may be noted that D1 contains 16 non-zero entries.

Similarly, the centermost 36� 48 region in the observation Y2 represents the observation

Y3 (see Figure 3.6(b)). Each pixel in this region corresponds to a 2� 2 block in Y3. The

decimation matrix D2 is estimated using Y3 and the centermost 36� 48 region in Y2. D2

contains 4 non-zero entries.

We obtain super-resolution and compare the results obtained using decimation matrix
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(a) (b) (c)

Figure 3.5: Observed images of `Nidhi' captured with three di�erent integer zoom settings.
The zoom factor between (a) and (b) is 2 and between (b) and (c) is also 2.

Y1 Y2 Y3
(a) (b) (c)

Figure 3.6: Regions of zoomed observations used for decimation estimation. D1 is esti-
mated using Y3 and highlighted rectangular area in Y1. Similarly D2 is estimated using
Y3 and highlighted rectangular area in Y2.

of the form in equation (3.2) consisting of equal weights. We used the quantitative

measures Mean Squared Error (MSE) and Mean Absolute Error (MAE) for comparison

of the results. The MSE used here is,

MSE =

P
i;j[f(i; j)� f̂(i; j)]2P

i;j[f(i; j)]
2

(3.25)

and MAE is,

MAE =

P
i;j jf(i; j)� f̂(i; j)jP

i;j jf(i; j)j
; (3.26)

where f(i; j) is the original high resolution image and f̂(i; j) is estimated super-resolution

image. In order to use high resolution image for the entire scene the most zoomed image

was captured with entire scene content. However, while experimenting only a portion of

it was used. The estimated D matrices are used in the cost function.

3.6.1 Results for MRF Model

In the �rst experiment, we considered three low resolution observations of a girl image

`Nidhi' shown in Figure 3.5, where the observed images have less intensity variations.

Figure 3.7 shows zoomed `Nidhi' image obtained using bicubic interpolation. Figure

3.8(a) shows super-resolved `Nidhi' image obtained by using the decimation matrix of
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Figure 3.7: `Nidhi' image zoomed by bicubic interpolation.

(a) (b)

Figure 3.8: Super-resolved `Nidhi' image. (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix (proposed approach).
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(a) (b) (c)

Figure 3.9: Observed images of a house captured with three di�erent integer zoom set-
tings.

Figure 3.10: House image zoomed by successive pixel replication.

the form in equation (3.2) and Figure 3.8(b) shows super-resolved `Nidhi' image obtained

by proposed method by using the estimated decimation matrix of the form in equation

(3.5). The comparison of the images show more clear details in the regions like cheeks

and forehead in the image obtained by the proposed method. The eyes look sharper and

the lines on the shirt appear clearly. The seam is clearly visible in Figure 3.8(a).

In the second experiment, we considered low resolution observations having arbitrary

texture with moderate amount of high frequency content. We consider a scene of a house

as shown in Figure 3.9. Zoomed house image obtained by successive pixel replication

is shown in Figure 3.10 and Figure 3.11 shows super-resolved house images obtained

using the two di�erent methods. The comparison of the �gures show that there is less

blockiness in the super-resolved image obtained by the proposed method. The textures

of grills in the window pane are more clearly visible in the image super-resolved using

proposed approach. We can also see the improvement in the branches of trees opposite

to windows.

In order to consider images with signi�cant texture, we experimented by capturing

zoomed images of a house with natural surroundings. The observed images are displayed

in Figure 3.12. Figure 3.13 shows super-resolved scene images. The small house near the
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(a) (b)

Figure 3.11: Super-resolved house image. (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix (proposed approach).

(a) (b) (c)

Figure 3.12: Observed images of a scene captured with three di�erent integer zoom
settings.

center of image appear sharper in the image super-resolved using the proposed approach.

Blockiness is less in the image obtained using the proposed approach as compared that

obtained using the other approach. The image super-resolved using the proposed ap-

proach appear to be visually pleasant. These results testify the e�ciency of our approach

for a wide range of data sets.

Table 3.1. shows the quantitative comparison of the our results with the one ob-

tained using equal weights for decimation matrix. It can be seen that for all the three

experiments, MSE and MAE of the super-resolved images obtained by using estimated

MSE MAE
Image Fixed Estimated Fixed Estimated

decimation decimation decimation decimation
(Equal weights) (proposed) (Equal weights) (proposed)

Nidhi 0.0514 0.0484 0.0525 0.0489
House 0.6733 0.6671 0.6751 0.6678
Scene 0.3056 0.2732 0.3082 0.2741

Table 3.1: Comparison of performance of the two methods of super-resolution.
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(a) (b)

Figure 3.13: Super-resolved scene image. (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix (proposed approach).

decimation matrices is lower than those obtained by �xed decimation matrix entries

showing improvement in the quantitative measures.

3.6.2 Results for AR Model

In the �rst experiment, we considered three low resolution observations of an image

`Divya' shown in Figure 3.14(a)-(c). The images were scanned from a �lm negative using

a scanner with di�erent resolution settings. Figure 3.14(a) is an image of size 72 � 96

pixels scanned with resolution of 300 dots/inch (dpi). To obtain second observation

shown in Figure 3.14(b), the same region was scanned at 600 dpi resolution and cropped

the centermost region of the size 72� 96. Similarly, the third observation Figure 3.14(c)

was obtained by scanning the region at 1200 dpi resolution and cropping the centermost

region of the size 72� 96. Figure 3.14(d) shows `Divya' image of size 288� 384 expanded

by successive bicubic interpolation and Figure 3.14(e) shows super-resolved `Divya' image

of same size obtained using MRF model and Figure 3.14(f) shows super-resolved `Divya'

image obtained by proposed method. The comparison of the images show more clear

details in the regions containing edges in the image obtained by our method. The seam

is clearly visible in Figure 3.14(d). Boundary of the head and eyes in the image super-

resolved using proposed approach look sharper. The proposed method has less smoothing

e�ect. In the second experiment, we considered low resolution observations of `Pool' image

shown in Figure 3.15(a)-(c). The observation images were obtained in the manner used in

the �rst experiment. Zoomed `Pool' images obtained by successive bicubic interpolation
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: (a)-(c) Observed `Divya' images, (d) `Divya' image expanded using bicubic
interpolation, (e) `Divya' image super-resolved using MRF model, and (f) `Divya' image
super-resolved using the proposed approach.

is shown in Figure 3.15 (d). Figure 3.15(e) shows the super-resolved image obtained

using MRF model and, (f) shows the super-resolved image obtained using AR model and

estimated decimation matrix. Many details previously aliased in the LR image are now

visible in the super-resolved image using the proposed approach. In Figure 3.15(d), seam

is visible in the region of head and face of the girl on right, where as in Figure 3.15(f)

the seam is not visible. Improvement is clearly seen in textured regions such as eyes and

discontinuities in the image super-resolved using proposed approach. However, we observe

some blockiness along the boundary of head. The most zoomed image has not enough

texture for learning decimation and AR parameters. Hence, the super-resolved image may

su�er from blockiness. We see that the high frequency details are better preserved in the

other images. The reason for the better solution using the AR model as compared to

MRF model is that we are using a larger neighborhood with more number of parameters

for the model representation. This is enables the algorithm to capture the prior better

then the MRF model as we are constrained to use a very few cliques during the MRF

modeling for reasons of computational di�culties in learning these model parameters.
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(a) (b) (c)

(d) (e) (f)

Figure 3.15: (a)-(c) Observed `Pool' images, (d) `Pool' image expanded using bicubic
interpolation, (e) `Pool' images super-resolved using MRF model and, (f) super-resolved
using the proposed approach.

3.7 Application of Decimation Estimation to Mul-

tiresolution Fusion in Remote Sensing

The growth in agriculture, increased urbanization and natural processes all contribute

to the changing nature of land use and land cover around the globe. Remote sensing

has been identi�ed as a critical tool in understanding changes on a large and small scale.

Many corporations and national governments operate satellite remote sensing systems

speci�cally designed for observation of the earth surface to collect information concerning

topics such as crops, forests, water bodies, land use, cities, and minerals. Satellite sensors

provide systematic observation of large areas with �ne details. Image sensors have a �xed

signal-to-noise ratio that is a function of the hardware design. The energy re
ected by the

target must have a signal level large enough for the target to be detected by the sensor.

The signal level of the re
ected energy increases if the signal is collected over a larger

instantaneous �eld of view (IFOV) or if it is collected over a broader spectral bandwidth.

Collecting energy over a larger IFOV reduces the spatial resolution while collecting it over

a larger bandwidth reduces its spectral resolution. Thus, there is a tradeo� between the

spatial and spectral resolutions of the sensor. A high spatial resolution can accurately

discern small or narrow features like roads, automobiles, shallow reefs, individual trees in

an orchard, etc. A high spectral resolution provides detailed information on such diverse
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areas as the quality of the road surfaces, the depth of the ocean, and the health of plants.

A high spectral resolution allows the detection of minor spectral changes, like those due

to vegetation stress or molecular absorption.

The remote sensing systems are equipped with two kinds of sensors: Panchromatic

sensors that capture the images of the earth with high spatial resolution but with lower

spectral and radiometric details; and multispectral sensors that capture images that pro-

vide �ner details concerning spectral characteristics of the earth but less spatial resolution.

The panchromatic (Pan) images are characterized by high spatial resolution whereas mul-

tispectral (MS) images are characterized by high spectral resolution. Examples of an MS

image and a Pan image are shown in Figure 3.16. In the multi-spectral images, most ur-

ban objects can be visually recognized according to the color di�erence, but they cannot

be clearly delineated due to the lack of spatial resolution. In the panchromatic images,

however, the shape of most individual objects can be clearly identi�ed, but many of them

cannot be classi�ed due to the lack of spectral information. The process of combining

Pan and MS data to produce MS images characterized by both high spatial and spectral

resolutions is known as multiresolution fusion. Since, the fusion process utilizes both

spectral information from multi-spectral images and spatial information from panchro-

matic images, one can overcome the limitations of information obtained from individual

sources and obtain a better understanding of the observed scene. Many researchers have

addressed the problem of multiresolution image fusion for remote sensing applications

[144, 145, 146, 147, 148, 149, 150, 142, 151, 152].

In this section we show the application of the proposed technique to multispectral

fusion in remotely sensed images. Since the Pan image has high spatial resolution and

MS images have lower spatial resolution, we estimate the aliasing on MS images by using

the Pan image. The same Pan image is used to estimate the aliasing on each of MS images.

The authors in [142] obtain multiresolution fusion using AR parameters estimated from

the entire PAN image. However, they do not employ decimation estimation. In addition,

better results can be obtained if PAN and MS images are divided into blocks and fusion of

each block is achieved using AR parameters estimated from each of the block separately.

We address the problem using the proposed technique of decimation estimation. Further

we divide the MS image into several blocks and learn AR model parameters for each

block separately.
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(a) (b)

Figure 3.16: (a) An MS image and (b) a Pan image.

Image Spectral Spatial Color
bandwidth (�m) resolution (m)

MS Band 1 0.45-0.52 2.44 Blue
MS Band 2 0.52-0.60 2.44 Green
MS Band 3 0.63-0.69 2.44 Red
MS Band 4 0.76-0.89 2.44 Near infrared
Panchromatic 0.45-0.89 0.61 Natural

Table 3.2: Spectral and spatial resolutions of Quickbird images.

For the experiment, we consider LANDSAT-7 Enhanced Thematic Mapper Plus (ETM+)

images acquired by Quickbird satellite. The Quickbird satellite is tailored to acquire �ne

detail imagery using a Panchromatic band and four multispectral bands. Table 3.3 shows

the spectral and spatial resolutions of the Landsat 7 ETM+ sensor. We conducted ex-

periments on Quickbird data set consists of four MS images of size 128� 128 pixels at a

spatial resolution of 2:4m� 2:4m and a coregistered PAN image of size 512� 512 pixels.

The images were captured over Malpensa city in Italy. The PAN image decimated by a

factor of 4 was used to learn the AR parameters, and the original MS images were used

as reference (true) data in order to make a quantitative comparison. We model the MS

image formation process using simple decimation process described by,

ym = Dmzm + nm; m = 1; � � � ; p: (3.27)

It may be noted that the subscript m in the equation represents the MS Band number.

Each of the observed low resolution MS images is modeled as decimated and noisy version
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of its high resolution version. Our problem is to estimate high resolution MS images zm

given observed MS images ym and a Pan image. Since the Dm matrix is not invertible,

our problem is ill-posed and there are in�nite solution to it. We solve the problem using

regularization framework. Obtaining a solution using this framework requires a reason-

able assumption about the nature of the true image. MAP estimation with convex priors

implies a globally convex optimization, ensuring solution existence and uniqueness allow-

ing the application of e�cient descent optimization methods. Once a-priori constraint on

the solution is included, the obtained good solution depends on the model parameters.

We represent the contextual dependencies in each unknown high resolution fused MS

image using an AR model.

In our experiment, �rst we estimate the decimation. The estimation of the decima-

tion requires the true high resolution MS image. Since the true high resolution MS image

is unavailable, we use Pan image and observed MS image to estimate the same. The

PAN image is used for estimating aliasing matrices for all the MS images as the aliasing

depends on di�erence in spatial resolution between high resolution and low resolution

images. We divide the an MS image into 16 blocks and model the spatial dependencies in

each unknown high resolution fused block using an AR model. However, the parameters

of the AR prior model are unknown as the true high resolution MS images are unavail-

able and have to be estimated. We propose to use the Pan image for the learning of the

parameter values, so that they can be used to improve the solution. The required AR

parameters are estimated from corresponding block in the Pan image, and are used as

coe�cients for linear dependencies in the AR model of the fused MS block. This cor-

responds to injecting in the MS image the geometrical properties learnt from the high

resolution Pan observations. The model parameters learnt from the Pan image are used

in a suitable regularization framework to obtain high spatial and spectral resolution MS

images. We arrive at the cost function given by equation (3.24) for each of MS images

separately and minimize using simple gradient descent technique. It may be noted that

the z in the equation has to be replaced by zm, where m = 1; 2; : : : ; p. Figure 3.17(a)

shows observed MS image (Band 2). The zoomed images obtained by bicubic expansion

and super-resolved images obtained using MRF model and proposed method are shown

in Figure 3.17(b), (c) and (d) respectively. The roads and the tra�c island are clearly

visible in the Figure 3.17(d). From the �gure it is clear that the fused image obtained
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(a) (b) (c) (d)

Figure 3.17: (a) Observed MS image (Band 2), (b) Zoomed MS (Band 2) image ob-
tained using bicubic expansion, (c) Fused MS (Band 2) image obtained using MRF prior
model, and (d) Fused MS (Band 2) image obtained using AR based prior nodel (proposed
approach).

MSE
Image Bicubic MRF model AR model

expansion
Divya 0.003526 0.005277 0.002438
Pool 0.006508 0.005280 0.005827
MS (Band 2) 0.023230 0.192880 0.022506

Table 3.3: Performance comparison of di�erent methods.

using the proposed method has high spatial resolution with negligible spectral distortion

as compared to images obtained using the other two methods. Table 3.3. shows the quan-

titative comparison of performance of our method with that of the other two methods.

3.8 Conclusion

We have presented a technique to estimate decimation from the observations and recover

the super-resolution intensity �eld from a sequence of zoomed observations by using es-

timated decimation matrices. The estimation of decimation requires true high resolution

image and low resolution image. Since, we have multiple observations captured using dif-

ferent zoom setting of a camera, we use the most zoomed observation and corresponding

small regions in the lesser zoomed observations to estimate decimation. The resolution

of the entire scene (least zoomed observation) is obtained at the resolution of the most

zoomed observation. We considered MRF model to enforce smoothness constraint while

regularizing. The experimental results shows that super-resolution with decimation esti-
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mation yields better results as compared to those obtained without decimation estimation.

We selected the MRF model parameters using trial and error basis. Better results can

be obtained using the MRF parameters estimated from the most zoomed observation.

Since estimating the MRF model parameters itself is a computationally taxing task, we

considered AR model to represent the spatial dependency in the super-resolved image.

We have a part of the super-resolved image already available in form of the most zoomed

observation, it is possible to obtain true AR parameters. We estimated AR parameters

from the most zoomed observation and used it to obtain regularized solution.

We have applied the proposed technique for decimation estimation to multiresolution

fusion in remotely sensed images. High spatial resolution Pan image and low resolution

MS image were used to estimate the decimation. We obtained high spatial resolution MS

images using regularization framework. The high resolution MS image is modeled as an

AR model. Subsequently, a suitable regularization scheme is employed for the AR model.

The AR prior parameters were obtained from the Pan image. Fusion results obtained

using the AR prior model show better edges and textures over those obtained using MRF

prior model. The qualitative illustrations of the experimental results demonstrate the

e�ectiveness of the proposed approach.

The proposed super-resolution approach uses multiple low-quality images to produce

the super-resolved image. The higher frequencies in the resulting image, which represent

the newly introduced details, are in fact available in the observations in an aliased form.

The proposed approach recovers these high frequencies by exploiting the various given

images, each exhibiting a di�erent aliasing e�ect. However, for this technique to succeed,

su�cient number of low-resolution images are needed, so as to enable the recovery of

the aliased frequencies. Based on the this reasoning, one might be led to the conclusion

that SR based on a single measured image is impossible. Is it indeed so? The answer

depends on the availability of the information that the reconstruction process needs to

obtain super-resolution. One fascinating and promising alternative is to use a database

of high resolution training images to recover the �ner detail of the super-resolved image

from it. In next chapter, we explore the learning based super-resolution technique for

single image super-resolution.



Chapter 4

Learning Using LR-HR Pairs of

Images

Images captured using a high spatial resolution camera provide better details that are

critical in imaging applications such as medical imaging, remote sensing, surveillance.

The resolution of an image, captured by a camera is determined by the spatial density

of photo sensitive detectors in the camera. High resolution (HR) images can be captured

using a camera �tted with high precision optics and image sensor comprising high den-

sity detectors. The cost of such a camera is prohibitively high and hence is an important

concern in many commercial applications requiring HR imaging. In many imaging ap-

plications like remote surveillance, wildlife sensor network and remote sensing it is not

feasible to capture the high resolution images even if the camera is capable of. This is

mainly due to application speci�c limitations such as memory, transmission bandwidth,

power and camera cost. The low cost cameras have limited optical zoom and are �tted

with low memory. With such a camera one is forced to capture the images and video at

limited resolution. The transmission and processing of high resolution images may still

cost enough.

Consider an example of video surveillance. Surveillance cameras are used to monitor

shoppers at stores, ATM users, potential interlopers, vehicular tra�c and pedestrians

etc. When a crime occurs, the recorded footage is often used to identify the perpetrator,

the location of the incident and the sequence of events that took place. Meanwhile,

video cameras are commonly embedded in mobile devices such as cell phones and PDAs,

enabling users to opportunistically produce recordings of incidents that may subsequently

59
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serve as evidence in legal proceedings. Obviously, the better the quality of a video

recording, the greater its value to an investigation and subsequent legal proceedings.

However, for a variety of reasons, including camera features, distance and recording

speed, storage and transmission, a video recording may be of lesser quality, requiring

it to be enhanced to provide adequate detail. Algorithmic approaches to obtain the high

resolution image using the given low resolution (LR) observation can be useful in such

applications. The low spatial resolution video captured from di�erent cameras can be

super-resolved by the use of already available LR-HR database for analysis at a later

time.

In this work, we demonstrate that it is possible to super-resolve a low resolution image

captured using a low cost camera. This is de�nitely advantageous as one can obtain high

resolution images/video by using a low resolution camera �tted with a limited memory.

Present day high end cameras have options to capture images and video at di�erent

spatial resolution. Hence it is possible to click a large number of LR-HR images o�ine

and store them on a computer. This is a one time operation. This database can be

used to learn the true relationship of the spatial features of an image across the scales.

We propose new learning technique and solve the single frame super-resolution problem

using stochastic SR reconstruction method. The proposed technique can also be used in

image/video compression for transmission over a channel with limited bandwidth. One

can transmit the compressed LR images and obtain high resolution at the receiver end

by using a set of training pairs.

The natural scene may contain regions with a wide variety of textures and may have

continuously changing textures. Since, the homogeneous MRF model prior tends to over-

smooth the super-resolution reconstructions, it has to be replaced by a di�erent model

in favor of preserving edges and textures. Inhomogeneous Gaussian random �elds have

been investigated by Aykroyd [153] using simple simulated examples. In this chapter we

propose an inhomogeneous Gaussian Markov random �eld as a prior model for super-

resolution reconstruction. The simplicity of the Gaussian model allows rapid calculation,

and the 
exibility of the spatially varying prior parameter allows varying degrees of spatial

smoothing. We demonstrate that the proposed procedures lead to more accurate recon-

struction than edge-preserving homogeneous alternatives discussed in previous chapter.

The inhomogeneous model allows greater 
exibility; small features are not masked by
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the smoothing, and constant regions obtain su�cient smoothing to remove the e�ects of

noise.

4.1 Related Work

In recent times, learning-based super-resolution algorithms have attracted much atten-

tion. In these algorithms the priori information is derived from the training database

[85], [106], [107], [105], [108], [4], [121], [120], [110]. Based on the framework of Free-

man et al. [84], Kim and Kwon investigate a regression-based approach for single-image

super-resolution [4]. Here the authors generate a set of candidates for each pixel using

patch-wise regression and combine them based on the estimated con�dence for each pixel.

In the post processing step, they employ regularization technique using discontinuity pre-

serving prior. The disadvantage of all the above approaches is that they either obtain

the LR images in the database by downsampling the high resolution images i.e., simulate

the LR images or use an interpolated version of the LR image while searching. Such a

database do not represent the true spatial features relationship between LR-HR pairs as

they do not correspond to the images captured by a real camera. Jiji et al. demonstrate

super-resolution of a single frame gray scale image using a training database consisting of

high resolution images downloaded from the internet [3]. They learn the high frequency

details of the SR image from the database and obtain regularized solution by employing

Markov Random Field (MRF) prior model and a wavelet prior. Our work in this paper

is based on their work. However, we use a di�erent approach for learning as well as for

regularization.

In this work, we present a learning based approach for super-resolving an image us-

ing single observation. First, we learn �ne details of the super-resolved image from a

database and obtain initial estimate of super-resolved image. We construct the database

by capturing both the low resolution as well as their high resolution versions using a

real camera. Thus we make use of the true transformation that exists between the LR

and HR images while learning. We use discrete wavelet transform (DWT) based method

to learn the high frequency contents. We then model the unknown high resolution im-

age as an inhomogeneous Gaussian MRF (IGMRF) and estimate the model parameters

using the initial HR estimate. The aliasing (decimation) matrix entries used in the im-
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age formation model are also estimated using the same initial estimate. The �nal HR

estimate is obtained by using the MAP formulation. The method is extended to color

image super-resolution where we super-resolve the luminance component using proposed

learning based approach and then interpolate the chrominance components in the wavelet

domain in order to obtain super-resolved color image.

4.2 Block Diagram Description of the Approach

The proposed technique of learning based super-resolution is illustrated by the block di-

agram shown in Figure 4.1. Given a low resolution observation (test image), we learn its

high frequency contents from a database consisting of a set of low resolution images and

their high resolution versions. It may be noted that the LR images are not constructed

by downsampling the HR images as is done by most of the learning based approaches.

Instead they are captured by using a real camera comprised of various resolution settings

and hence represent the true LR-HR versions of the scenes. In order to learn the high fre-

quency components, we consider discrete wavelet transform based method. The transform

coe�cients corresponding to the high frequency contents are learned from the database

and an initial estimate for the high resolution version of the observation is obtained by

taking the inverse DWT. This initial HR estimate is used for decimation estimation as

well as for estimating the IGMRF parameters. The estimated decimation models the

aliasing due to undersampling and the IGMRF parameters inject the geometrical prop-

erties in test image corresponding to the high resolution image. We then use an MAP

estimation to arrive at a cost function consisting of data �tting term and the prior term.

A suitable optimization is exploited to minimize the cost function. The minimization

leads �nal super-resolved image. We extend this method to color image super-resolution

where we super-resolve the luminance component using the proposed method and use

the interpolation in wavelet domain for chrominance components. The luminance and

chrominance components are then combined to obtain the super-resolution. We mention

here that although we use a large number of LR-HR images in the database, it is not pos-

sible to capture the true spatial features for the high resolution image using the learning.

Also the use of wavelet transform limits the learning of edges in the horizontal, vertical

and diagonal directions only. Hence we need regularization in order to obtain a better
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Figure 4.1: Schematic representation of proposed approach for image super-resolution [2].
Here LR, HR and SR stand for Low Resolution, High Resolution and Super-Resolution,
respectively. Here, IGMRF represents Inhomogeneous Gaussian Markov Random Field.

solution.

The main highlights of the approach are as under:

� We learn the wavelet coe�cients that correspond to the high frequency contents

of the super-resolved image from a database consisting of a set of low resolution

images and their high resolution versions. Since the construction of the database is

a one time and o�ine operation, we can use the computer memory for the storage

of database images. This allows us to capture a large number of images, even when

the memory of the camera is limited.

� The database consists of LR and HR images both captured by varying the resolution

setting of a camera. Such pairs truly represent the spatial features relationship

between low resolution image and its high resolution versions.

� An inhomogeneous Gaussian MRF is used to model the super-resolved image �eld.

The advantage in using this model is that it is adaptive to the local structures in

an image and hence eliminates the need for a separate edge preserving prior.

� We estimate the aliasing matrix entries and the IGMRF parameters using the initial

HR estimate. Since we use true LR-HR pairs for learning the initial HR estimate

we expect that the estimated parameters are close to their true values.

� For color image super-resolution, we apply the proposed method for super-resolving

luminance component and suggest a wavelet domain interpolation approach for the
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chrominance components.

� While using the edge preserving IGMRF prior we employ a simple gradient descent

approach and thus avoid the use of computationally taxing optimization techniques

such as simulated annealing.

4.3 Learning the Initial HR Estimate

In this section we discuss the new learning technique in order to obtain the initial HR

estimate. It may be noted that the learning based approach proposed in [3] uses a data-

base consisting of high resolution images only and these images are downloaded from the

internet. The main drawback of this approach is that the use of the images downloaded

from the internet does not guarantee that these images indeed represent high resolution

database. They may represent the upsampled versions of the low resolution images ob-

tained using standard interpolation techniques. Also, these may represent the collection

of images captured using di�erent cameras with di�erent hardware con�gurations. All

this contributes for errors in the SR estimation. Our approach di�ers from their approach.

We use a training set of LR-HR images covering a wide range of scenes. These images

are captured by adjusting the resolution setting of a real camera. It is of interest to note

that our database do not contain the LR images synthesized using the downsampling op-

eration as used by the other learning based approaches. Truly, this makes the algorithm

capable of super-resolution for the cases when the HR ground truth is not available.

In this work, we learn the transform coe�cients for the initial estimate of the super-

resolved image for a decimation (upsampling) factor of q = 2 and q = 4. The database

for leaning consists of a large number sets of LR and HR images covering indoor scenes

as well as outdoor scenes taken at di�erent times and with di�erent lighting conditions.

For a decimation factor q = 2, a set consists of two images (LR and HR) for each of

the captured scenes. Similarly, for a decimation factor of q = 4, there are three images

in a set for each scene having di�erent resolutions. Before we describe the method for

learning it is important to mention the following points. For a decimation factor of

q = 4, we �rst learn the initial estimate for q = 2 using the database consisting of LR-

HR pairs with a resolution factor of 2. We then use this estimate as the test image

for q = 4. We thus apply the single octave learning algorithm in two steps in order to
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obtain image super-resolution for q = 4. The reason for the two step operation is as

follows. In a multi-resolution system, every coe�cient at a given scale can be related to

a set of coe�cients at the next coarser scale of similar orientation [154]. The Lipschitz

property states that near sharp edges, the wavelet coe�cients changes exponentially over

the scales [155][156]. Hence the error between the coe�cient in test image and its best

matching coe�cient from the LR training image increases exponentially when one learns

the wavelet coe�cients using a database of LR-HR pairs with a resolution di�erence of

four. In the proposed single octave approach this error adds up linearly over the scales.

Thus the error propagation in the proposed approach is linear and the learning of wavelet

coe�cients is more accurate in comparison with the learning using one step operation.

It may be noted here that the two step operation of the single octave algorithm restricts

the super-resolution to powers of 2 only.

4.3.1 Learning Discrete Wavelet Transform (DWT) Coe�cients

Now we describe the approach for DWT based learning for a decimation factor of 2

(q = 2). We use two level wavelet decomposition of the test image for learning the

wavelet coe�cients at the �ner scale. The LR training images in the database are also

decomposed into two levels, while their HR versions are decomposed into one level. The

reason for taking one level decomposition for HR training images is as follows. With one

level decomposition the subband LL represents the scaled version of the HR image and

the subbands LH, HL, and the HH represent the detailed coe�cients (vertical, horizontal

and diagonal edges) at the high resolution. This means that for q = 2, both the LR

image (subband LL) and the edge details at �ner scales (subbands LH, HL, and HH) are

available in HR transformed image. This motivates us to compare the edges in the test

image with those present in the LR training set and choose the best matching wavelet

coe�cients from the HR images. Thus given an LR test image, we learn its edges (high

frequency content) at �ner scale using these LR-HR training images. Figure 4.2 illustrates

the block schematic for learning the wavelet coe�cients of the test image at �ner scales

using a set of L training image pairs for a decimation factor of 2. Figure 4.2(a) shows the

subbands 0�V I of the low resolution test image and Figure 4.2(b) displays the subbands

0(m) � V I(m), m = 1; : : : ; L of the LR training images and subbands 0(m) � III(m), of
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(a) (b)

Figure 4.2: Illustration of learning of wavelet coe�cients at a �ner scale using a data-
base of LR-HR image pairs. (a) Test image (LR observation) with a two level wavelet
decomposition. Wavelet coe�cients (marked as hollow squares) are to be estimated for
the subbands shown with the dotted lines. (b) A training set of LR and HR images in the
wavelet domain (LR training images are decomposed into two level and the HR training
images into one level).

the HR training images. We compare the coe�cients in subbands I to V I of the test

image with those in subbands I(m) to V I(m) of the LR training images and obtain the

best matching coe�cients for subbands V II, V III and IX of the test image. Here the

test image and the LR training images are of sizeM�M pixels. The HR training images

have a size of 2M � 2M pixels. L is the number of sets of LR-HR training images in the

database.

The learning procedure is as follows. Let  (i; j) be the wavelet coe�cient at a location

(i; j) in subband 0, where 0 � i; j < M=4. The wavelet coe�cients  (i; j + M=4),

 (i + M=4; j) and  (i + M=4; j + M=4) are the wavelet coe�cients corresponding to

subbands I, II and III, respectively. These wavelet coe�cients and a 2 � 2 block
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consisting of f (k; l+M=2)k=2i+1;l=2j+1k=2i;l=2j g, f (k+M=2; l)k=2i+1;l=2j+1k=2i;l=2j g and f (k+M=2; l+

M=2)k=2i+1;l=2j+1k=2i;l=2j g in each of the subbands IV -V I are then considered to learn a 4 � 4

wavelet block in each of the subbands V II-IX. For each of the subbands IV -V I in the

test image, we need to learn 4�4 = 16 coe�cients for corresponding location in subbands

I�III. Thus for every location (i; j) in subband 0, we learn a total 16�3 = 48 coe�cients

for the subbands V II-IX. We search for the LR training image that has a bast match

with the test image by comparing the wavelet coe�cients in the subbands I-V I in the

minimum absolute di�erence (MAD) sense. The corresponding wavelet coe�cients from

the subbands I-III of the HR training image are then copied into the subbands V II-IX

of the test image. For a given location (i; j) the best matching LR training image in the

subbands I � III is found by using the following equation for MAD.

ĉ(i; j) = argmin
m
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;

(4.1)

where k1 = k + M
2
, l1 = l + M

2
, and ĉ(i; j) is an index to the best matching LR image in

the database for the location (i; j) and 1 � ĉ(i; j) � L. Here  (m)(i; j), m = 1; 2; : : : ; L,

denotes the wavelet coe�cient for mth training image at location (i; j). For each location

in subband I � III of the low resolution observation, a best �t 4 � 4 block of wavelet

coe�cients in subbands I � III from the HR image of the training pairs given by ĉ(i; j)



4.3 Learning the Initial HR Estimate 68

are copied into subbands V II; V III and IX of the test image. Thus we have,

f (s; t1)s=i1;t=j1s=4i;t=4jg := f (ĉ(i;j))(s; t1)
s=i1;t=j1
s=4i;t=4jg

f (s1; t)s=i1;t=j1s=4i;t=4jg := f (ĉ(i;j))(s1; t)
s=i1;t=j1
s=4i;t=4jg

f (s1; t1)s=i1;t=j1s=4i;t=4jg := f (ĉ(i;j))(s1; t1)
s=i1;t=j1
s=4i;t=4jg:

(4.2)

Here s1 = s+M , t1 = t+M , i1 = 4i+ 3, and j1 = 4j + 3. This completes the learning

process. The inverse wavelet transform of the learned HR image then gives initial HR

estimate. This HR estimate provides a su�ciently good approximation of the ground

truth and its properties enable robust estimation of decimation and adaptive parameters

needed for regularization.

4.3.2 Analysis of Computational Complexity

We now analyze the computational complexity of the proposed approach for single oc-

tave operation. We learn the wavelet coe�cients corresponding to high frequency using

a database consists of L pairs of LR-HR images. Let the test image of size M �M be

decomposed into W levels of wavelet transform. As a result of this decomposition, the

transformed image has 3W subbands of details and one subband of the approximation.

There are W subbands for each of vertical, horizontal and diagonal details. Consider the

subbands corresponding to vertical details. We learn the vertical details at �ner scale us-

ing the vertical details across all coarser scales. In other words, we use wavelet coe�cients

in all the vertical details subbands to �nd best matching coe�cients from the database.

The size of a subband at W th level is M
2W

� M
2W

and it consists of ( M
2W

)2 coe�cients. We

need to learn �ner coe�cients for each of the coe�cients for the coarse subband. For

each of the coe�cients in this subband, the best matching coe�cients at �ner level can

be searched by comparing corresponding
Pp=W�1

p=0 22p coe�cients in the vertical detail

subbands. These coe�cients are compared with coe�cients at corresponding locations

in the each of the LR images in the database. Thus number of comparison required for

learning vertical details is,

L(
M

2W
)2

p=W�1X
p=0

22p: (4.3)
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Figure 4.3: Image formation model. Here # symbol represents decimation and q represents
the decimation factor.

Similar comparisons are used to �nd best matching coe�cients at �ner level of horizontal

and diagonal subbands. Hence total number of comparison operations for learning all the

details amounts to,

3L(
M

2W
)2

p=W�1X
p=0

22p: (4.4)

In our experiment, we use two level decomposition (W = 2) of the test image of size

64 � 64 and learn the coe�cients using the database of 750 pairs (L = 750) of LR-HR

images. In this case, the number of comparisons required are 3� 750� (64
22
)2 � (20 + 22)

= 2 880 000. Although this involves number of computations, it is not computationally

taxing to present day high performance computers as the process is not iterative.

4.4 Forward Model and Decimation Estimation

We propose a super-resolution algorithm that attempts to estimate high resolution image

from single low resolution observation. This is an inverse problem. Solving such a problem

needs a forward model that represents the image formation process. We consider a linear

forward model for the image formation which can be written as,

y = Dz+ n: (4.5)

Here, the observed image Y is of sizeM�M pixels and y represents the lexicographically

ordered vector of size M2 � 1, which contains the pixels from image Y . Similarly, z

is actual HR image. The decimation matrix D takes care of aliasing. For an integer

decimation factor of q, the decimation matrix D consists of q2 non-zero elements along

each row at appropriate locations. Here n is the independent and identically distributed
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(i.i.d.) noise vector with zero mean and variance �2n. It has same size as y. The pictorial

representation of this observation model is shown in Figure 4.3. The multivariate noise

probability density is given by,

P (n) =
1

(2��2n)
M2

2

e
� 1

2�2n
n
T
n

: (4.6)

Our problem is to estimate z given y, which is an ill-posed inverse problem.

Generally, the decimation model to obtain the aliased pixel intensities from the high

resolution pixels, for a decimation factor of q, has the form [48],

D =
1

q2

0
BBBBBB@

1 1 : : : 1 0

1 1 : : : 1

0 1 1 : : : 1

1
CCCCCCA
: (4.7)

The decimation matrix in equation (4.7) indicates that a low resolution pixel intensity

y(i; j) is obtained by averaging the intensities of q2 pixels corresponding to the same scene

in the high resolution image and adding noise intensity n(i; j). Due to di�erent lighting

conditions and di�erent scene contents the aliasing di�ers from image to image. We

cannot consider the aliasing e�ect as averaging e�ect. Hence we estimate the same.

Since the initial high resolution estimate is available we make use of the same to obtain

the decimation matrix entries and thus learn the aliasing better. The decimation matrix

of the form shown in equation (4.7), can be modi�ed as,

D =

0
BBBBBB@

a1 a2 : : : aq2 0

a1 a2 : : : aq2

0 a1 a2 : : : aq2

1
CCCCCCA
; (4.8)

where jaij � 1; i = 1; 2; : : : q2. When we use equation (4.7) each of the ai has a value

of 1
q2
. However, in the above equation the estimates of ai are based the LR observation

and the initial HR estimate. Thus the estimated ai are more accurate as compared to

using ai =
1
q2

in equation (4.7) and are closer to the true values for the chosen model. It
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may be noted that this form of decimation matrix D implicitly contains moving average

(space invariant) blur in the downsampling process. The estimation of aliasing requires

low resolution image and its high resolution version. The main di�culty of alias estima-

tion comes from the fact that we cannot access the ground truth, i.e. the original high

resolution image. The initial HR estimate obtained using DWT based learning approach

proposed in section 4.3 provides a su�ciently good approximation of the ground truth,

we use it to estimate decimation.

4.5 Image Field Model

As discussed in section 1.3.2 super-resolution is an ill-posed inverse problem. There are

in�nite solutions to equation (4.5). A reasonable assumption about the nature of the true

image makes the ill-posed problem into better posed and this leads to a better solution.

Selection of the appropriate model as the prior helps us to obtain a better solution.

Over recent years, the use of homogeneous prior models in image processing has

become widely accepted. The homogeneous MRF model prior tends to oversmooth

the super-resolution reconstructions. In the MRF model prior based HR reconstruc-

tion schemes, there is a fundamental trade-o� between smoothness of the super-resolved

image and the amount of noise or visually unappealing artifacts. This occurs because

the solution penalizes discontinuities in the image. Discontinuities can be outlier pixels,

restoration artifacts, or noise, but they can also be real edges that are present in the

image. Since the simplest Gaussian model tends to oversmooth reconstructions, it has

been rejected in favor of various edge-preserving alternatives. The problem is not with

the Gaussian family, but rather with the assumption of homogeneity. A more e�cient

model is one which considers that only homogeneous regions are smooth and that edges

must remain sharp. This motivates us to consider an inhomogeneous prior which can

adapt to the local structure of the image in order to provide a better reconstruction.

4.5.1 Inhomogeneous Gaussian Markov Random Field Prior Model

In this chapter, we propose an inhomogeneous Gaussian Markov random �eld as a prior

model for super-resolution. Inhomogeneous Gaussian random �elds have been investi-

gated by Aykroyd [153]. The simplicity of the Gaussian model allows rapid calculation,
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and the 
exibility of the spatially varying prior parameter allows varying degrees of spa-

tial smoothing. The inhomogeneous model allows greater 
exibility; small features are

not masked by the smoothing, and constant regions obtain su�cient smoothing to re-

move the e�ects of noise. This also helps to eliminate the need for separate priors to

preserve edges as well as smoother regions in an image. Here, we propose an inhomoge-

neous Gaussian Markov random �eld as a prior model for super-resolution reconstruction.

We demonstrate that the proposed procedures lead to more accurate reconstruction than

edge-preserving homogeneous alternatives discussed in previous chapter.

The authors in [157] model the super-resolved image by an inhomogeneous Gaussian

MRF with an energy function that allows us to adjust amount of regularization locally.

They de�ne corresponding energy function as,

U(z) =
X
i;j

h
bxi;j(DxZ)

2
i;j + byi;j(DyZ)

2
i;j

i
; (4.9)

where Dx and Dy are �rst order derivative operators with respect to rows and columns

and Z is the super-resolved image. Here, bxi;j and byi;j are the IGMRF parameters at

location (i; j) for vertical and horizontal directions, respectively. In the above energy

function, the authors model the spatial dependency at a pixel location by considering a

�rst order neighborhood thus considering edges occurring in the horizontal and vertical

directions only. However, in practice there may be diagonal edges in the reconstructed

image. In order to take care of these edges we consider a second order neighborhood and

modify the energy function as follows.

U(z) =
X
i;j

h
bxi;j(DxZ)

2
i;j + byi;j(DyZ)

2
i;j + bgi;j(DgZ)

2
i;j + bhi;j(DhZ)

2
i;j

i
: (4.10)

Here bgi;j and b
h
i;j are the IGMRF parameters at location (i; j) for diagonal directions. A

low value of b indicates the presence of edge between two pixels. These parameters help

to obtain a solution which is less noisy in smooth areas and preserve sharp details in other

areas. Now, in order to estimate the IGMRF parameters we need the true super-resolved

image which is not available and has to be estimated. Therefore an approximation of

Z has to be accurately determined if we want the parameters obtained from it to be

signi�cant for regularization. This is why we choose to use the learning based approach
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to compute the close approximation of Z. Since the results of this approach exhibit sharp

textures and are su�ciently close to the original image it enables us to estimate the

adaptive parameters from it.

4.5.2 Estimation of IGMRF Parameters

The maximum likelihood estimate on complete data with respect to the original image

Z is,

b̂x;y;g;hi;j = argmax

b
x;y;g;h
i;j

�
logP (Zjbx; by; bg; bh)�; (4.11)

and the log-likelihood derivatives are,

@logP (Zjbx; by; bg; bh)
@bx;y;g;hi;j

= EZ
�
(Dx;y;g;hZ)2i;j)

�� (Dx;y;g;hZ)
2
i;j; (4.12)

where Z corresponds to the maximum a posteriori estimate of the high resolution image.

Therefore the estimation problem consists of solving system,

fEZ
�
(Dx;y;g;hZ)2i;j)

�
= (Dx;y;g;hZ)

2
i;j)g: (4.13)

It can be seen that the expectation term only depends on the parameters and the other

term only depends on Z. This simpli�es the estimation problem. It is su�cient to com-

pute the variance of each pixel di�erence with respect to the prior law EZ
�
(Dx;y;g;hZ)

2
i;j

�
.

The authors in [157] propose the simplest approximation of the local variance. The vari-

ance of the gradient (Dx;y;g;hZ)i;j is equal to the variance of the same gradient in the

homogeneous i.e. when all the parameters are equal to the corresponding bx;y;g;hi;j . Since

the covariance matrix of the homogeneous prior distribution is diagonalized by a Fourier

transform, this variance can be calculated and is equal to 1
4b
[158]. This gives,

b̂x;y;g;hi;j =
1

4(Dx;y;g;hZ)2i;j
: (4.14)

Since the true high resolution image Z is not available we use the close approximation

Z0 obtained using the DWT based learning approach and obtain the parameters using,

b̂x;y;g;hi;j =
1

4(Dx;y;g;hZ0)2i;j
: (4.15)
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The re�ned estimates of the IGMRF prior parameters are obtained using the following

equations.

b̂xi;j ' 1

8[(z0(i; j)� z0(i� 1; j))2]
;

b̂yi;j ' 1

8[(z0(i; j)� z0(i; j � 1))2]
;

b̂gi;j ' 1

8[(z0(i; j)� z0(i� 1; j + 1))2]
;

b̂hi;j ' 1

8[(z0(i; j)� z0(i� 1; j � 1))2]
;

(4.16)

where z0(i; j) is the pixel intensity of the initial estimate at location (i; j). Thus we esti-

mate four parameters at each pixel location. These parameters cannot be approximated

from degraded versions of original image. The parameters estimated from the blurred

image have high values which leads to oversmooth solution and the parameters estimated

from the noisy image are of very low values that leads to noisy solutions. Hence we use

the already learned high resolution estimation in order to obtain a better estimate of

these parameters. In order to avoid computational di�culties, we set an upper bound

b̂ = 1
8
whenever the gradient becomes zero, i.e. whenever the neighboring pixel intensities

are the same. Thus we set a minimum spatial di�erence of 1 for practical reasons. This

avoids obtaining high regularization parameter that would slow down the optimization.

It ensures that the pixels with zero intensity di�erence are weighted almost same as those

with small intensity di�erence (in this case with a pixel intensity di�erence of one).

4.6 Super-resolution Estimation

We now explain how an MAP estimation of the dense intensity �eld (super-resolved

image) can be obtained. The IGMRF model on the super-resolved image serves as the

prior for the MAP estimation in which the prior parameters are already known. The

data �tting term is derived from the forward model which describes the image formation

process. The data �tting term contains the decimation matrix estimated using the initial

HR image and the test image. In order to use maximum a posteriori estimation to
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super-resolve the test image, we need to obtain the estimate as,

ẑ = argmax
z P (zjy): (4.17)

Using the Bayes' rule we can write,

ẑ = argmax
z

P (yjz)P (z)
P (y)

: (4.18)

Since the denominator is not a function of z, equation (4.18) can be written as,

ẑ = argmax
z P (yjz)P (z): (4.19)

Now taking the log we can write,

ẑ = argmax
z [logP (yjz) + logP (z)]: (4.20)

Finally, using (4.5) and (4.10), the �nal cost function to be minimized can be expressed

as,

ẑ = argmin
z

"
k y�Dz k2

2�2n
+ U(z)

#
: (4.21)

In (4.21), the �rst term ensures the �delity of the �nal solution to the observed data

through the image formation model. The second term is inhomogeneous smoothness

prior. Since this cost function is convex, it can be easily minimized using a simple gradient

descent optimization technique, which quickly leads to the minima. This optimization

process is an iterative method and the choice of initial solution fed to the optimization

process determines the speed of convergence. Use of a close approximate to the solution

as an initial estimate speed-up the optimization process. In order to provide good initial

guess, we use the already learned HR estimate.

4.7 Applying the Algorithm to Color Images

Di�erent image processing systems use di�erent color models for di�erent reasons. The

RGB color space consists of three additive primary colors; red, green and blue. The RGB

model is widely used in color monitors, computer graphic systems, electronic displays and
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digital storage. Although this model simpli�es the design of computer graphic systems,

it is not suitable for super-resolution algorithms. The reason behind this is that the red,

green and blue color components are highly correlated. This makes it di�cult to di�cult

to apply the monochrome super-resolution technique to each of the R, G and B color

components with maintaining the natural correspondences between the color components

in the solution. The imbalanced correspondences between the color components produces

certain artifacts in super-resolved color image. In addition, applying super-resolution

techniques to each of these components separately increases the computational burden.

4.7.1 Y CbCr Color Space

In order to avoid the drawbacks of RGB color space, we separate the luminance channel

and chrominance components by applying color space transformation and represent the

color image in Y CbCr color space. The Y CbCr color model represents the color image us-

ing separate luminance component and chrominance (color) components. The luminance

is encoded in the Y and the blueness and redness are encoded in Cb and Cr, respectively.

Following equations show the conversion from an RGB image to a Y CbCr image.

Y = 0:29900R + 0:58700G+ 0:11400B;

Cb = �0:16874R� 0:33126G+ 0:50000B;

Cr = 0:50000R� 0:41869G� 0:08131B:

(4.22)

Similarly a Y CbCr image can be converted to an RGB image using,

R = 1:00000R + 0:40200Cr;

G = 1:00000R� 0:34414Cb � 0:71414Cr;

B = 1:00000R + 1:77200Cb:

(4.23)

Since the human eye is more sensitive to the details in the luminance component of an

image than the details in the chrominance component, we super-resolve the luminance
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component Y using the proposed approach and expand the chrominance components

using a simple interpolation technique. The authors in [159] propose an interpolation

technique for gray scale images by interpolating the wavelet coe�cients at �ner scale.

We apply their approach for expanding the chrominance components Cb and Cr. The fre-

quency domain interpolation of these components leads to enhanced edges as compared

to spatial interpolation methods like bilinear interpolation or bicubic interpolation. We

use the super-resolved luminance component and the interpolated chrominance compo-

nents to obtain super-resolved color image by converting Y CbCr to RGB color space. In

the following section, we describe the frequency domain interpolation of the chrominance

components of a color image.

4.7.2 Interpolation of the Chrominance Components

Now we describe frequency domain interpolation of the chrominance components. We

take two level wavelet decomposition of the chrominance components as shown in Fig-

ure4.4 and interpolate wavelet coe�cients for �ner scale i.e. subbands V II � IX. We

exploit the idea from zero tree concept, i.e., in a multi-resolution system, every coe�cient

at a given scale can be related to a set of coe�cients at the next coarser scale of similar

orientation [154]. This can be used to �nd the wavelet coe�cients at �ner scale. Thus to

interpolate the wavelet coe�cients in subband V II, we relate the coe�cients in subbands

I and IV and calculate the ratios dk(i; j), k = 1; : : : ; 4 as described below.

Let  (i; j) be the wavelet coe�cient at a location (i; j), where 0 � i; j < M=4. The

wavelet coe�cients  (i; j+M=4),  (i+M=4; j) and  (i+M=4; j+M=4) are the wavelet

coe�cients corresponding to subbands I, II and III respectively. Consider subbands

I and IV for interpolating coe�cients in subband V II. The four wavelet coe�cients

f (k; l+M=2)gk=2i+1;l=2j+1k=2i;l=2j in subband IV are related to a single coe�cient  (i; j+M=4)

in subband I. We de�ne the four ratios dk, k = 1; : : : ; 4, of the four coe�cients in subband
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IV and related one wavelet coe�cient in subband I as,

d1(i; j) =
 (2i; 2j + M

2
)

 (i; j + M
4
)
;

d2(i; j) =
 (2i; 2j + 1 + M

2
)

 (i; j + M
4
)

;

d3(i; j) =
 (2i+ 1; 2j + M

2
)

 (i; j + M
4
)

;

d4(i; j) =
 (2i+ 1; 2j + 1 + M

2
)

 (i; j + M
4
)

:

A single coe�cient  (2i; 2j+ M
2
) in subband IV corresponds to four coe�cients f (k; l+

M)gk=4i+1;l=4j+1k=4i;l=4j in subband V II. We calculate these four coe�cients by multiplying

 (2i; 2j + M
2
) with four ratios dk(i; j), k = 1; : : : ; 4 as,

 (4i; 4j +M) = d1(i; j)�  (2i; 2j +
M

2
);

 (4i; 4j + 1 +M) = d2(i; j)�  (2i; 2j +
M

2
);

 (4i+ 1; 4j +M) = d3(i; j)�  (2i; 2j +
M

2
);

 (4i+ 1; 4j + 1 +M) = d4(i; j)�  (2i; 2j +
M

2
):

(4.24)

Similarly, the wavelet coe�cients in subbands V III and IX are interpolated by calcu-

lating dk(i; j) from the respective subbands and multiplying them with corresponding

coe�cients in subbands V and V I, respectively. Once the coe�cients in all three sub-

bands V II� IX are interpolated, we take inverse wavelet transform to get the expanded

image. We apply this interpolation technique to both the components, i.e., Cb and Cr.

4.8 Experimental Results

In this section, we demonstrate the e�cacy of the proposed method to super-resolve a

low resolution observation. We �rst show results of our learning based techniques to

obtain the initial estimate of the super-resolved image. We then illustrate the results of

the optimization using the initial HR estimate for super-resolving the gray scale images



4.8 Experimental Results 79

Figure 4.4: Interpolation of the wavelet coe�cients at �ner scales. The wavelet coe�cients
in subbands V II � IX are interpolated using the zero tree concept.

as well as the color images. All the experiments are conducted on real world images.

The test images are of size 64 � 64 and the super-resolution is shown for upsampling

(decimation) factors of q = 2 and q = 4, respectively. Thus the size of the super-

resolved images are 128� 128 and 256� 256, respectively. We use 'DB4' wavelets in all

our experiments while estimating the initial HR image and also while interpolating the

chrominance components. In order to compare the results using quantitative measure,

we use the mean squared error (MSE) as the criteria. In order to compare the results

based on MSE, we choose an LR image from the database as a test image and hence

the true high resolution image is available for comparison. It has to be mentioned here

that the HR images of the test images are removed from the database during learning

process. We also conduct an experiment when the observed image is taken from a low

resolution camera. For this experiment we show the qualitative assessment only. All the

experiments were conducted on a computer with Pentium M, 1:70 GHz processor.

4.8.1 Experimental Results on Initial Estimates

Since we use the initial HR image to estimate the aliasing as well as the IGMRF parame-

ters it is important to discuss on the quality of the learned HR image. In this section we

show the results on the initial estimates obtained using our new learning strategy. We

compare these results with the learning based approach presented in [3] as they use a

learning strategy based on the DWT. In this paper the authors learn the high frequency

details from the database consisting of HR images and obtain the super-resolution in

a regularization frame work. They use an MRF prior and a wavelet prior while using

regularization. The training images used for learning are downloaded from the internet.
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Set 1

Set 2

Set 3

Set 4

(a) (b) (c)

Figure 4.5: Randomly selected sets of training images in the database. (a) Low resolution
images. (b) High resolution images with upsampling factor of 2 (q = 2), and (c) high
resolution images with upsampling factor of 4 (q = 4).
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In our approach, we construct a database of LR images and their HR versions. It is

worth to mention again that our database do not contain simulated images generated

using downsampling or upsampling. The construction of this database is one time and

o�ine operation. For each scene there are 2 or 3 images depending on upsampling factor.

For example, for an upsampling factor of 2 (q = 2), each scene has two images, an LR

image and its HR version. If q = 4, then there are 3 images, an LR image and two

HR versions of the same. All the images in the database are of real world scenes. A

computer controlled camera was used to capture the images for the database. In order

to avoid motion of the camera while capturing images of a scene at di�erent resolutions,

a stable and isolated physical setup was used. The camera was triggered by a MATLAB

program at successive but three di�erent time instances for capturing images at three

di�erent resolutions. The resolution setting of the camera was changed by the program

before each trigger. The time duration between two successive triggers was less than a

millisecond. The images of live subjects were captured under controlled environment.

We assume that the motion of subjects like human and other moving objects during one

thousandths of a second is negligible. We applied mean correction for compensating the

intensity variations among the images of each scene. Once the database is ready it can

be used for super-resolving images captured by the same camera or by a di�erent camera

having low resolution. Our database consists of images of 750 scenes. LR-HR images in

the database include indoor as well as outdoor scenes captured at di�erent times. The

LR and HR images are of sizes 64 � 64, 128 � 128, and 256 � 256, respectively and the

test image (to be super-resolved) is of size 64 � 64. It may be noted here that size of

the test image need to be an integer power of 2 and should not exceed that of the LR

training images. We have a total of 3�750 = 2250 images used for learning the initial HR

estimate. Since we show the results for q = 2 and q = 4, we make use of 2� 750 = 1500

and 3 � 750 = 2250 for q = 2 and q = 4, respectively. Here the multiplication factors 2

and 3 correspond to number of images of a scene. Figure 4.5 shows randomly selected

training images in the database. It may be mentioned here that we make use of images

in columns (a) and (b) while learning for q = 2 and use images in column (b) and (c) for

q = 4. The gray scale test images used in the experiments are displayed in Figure 4.6.

These test images are made up of di�erent textures and contain sharp edges as well as

smooth areas. The size of test images Image 1, Image 2 and Image 3 is 64� 64 and that
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Image 1 Image 2 Image 3 Image 4 Image 5

Figure 4.6: Low resolution observed images (test images). The size of Image 1, Image 2
and Image 3 is 64� 64 and that of Image 4 and Image 5 is 128� 128.

Image 1

Image 2

(a) (b) (c) (d)

Figure 4.7: Results of learning the initial high resolution estimates for the test images of
size 64� 64 shown in Figure 4.6 (q = 2). (a) Ground truth image, (b) Images expanded
using the bicubic interpolation, (c) initial HR estimates obtained using the approach pro-
posed in [3], and (d) initial HR estimates obtained using the proposed learning technique.

of Image 4 and Image 5 is 128� 128.

Figure 4.7 and Figure 4.8 show the results of the proposed learning technique for the

upsampling factor q = 2. Figure 4.7 displays results for the test images of size 64 �
64. Figure 4.7(a) shows ground truth images and Figure 4.7(b) shows images expanded

using bicubic interpolation. Blurry edges can be observed with the result of bicubic

interpolation. Figure 4.7(c) and (d) show the images upsampled using the Jiji et al. [3]

approach and the proposed learning technique, respectively. Similar results for the test

images of size 128�128 are shown in Figure 4.8. It can be seen that characters on the keys

in image 1 and image 4 upsampled using proposed approach are clearly visible. Similarly

window panes in image 2 and image 5 in Figure 4.7(d) and 4.8(d) appear sharp. Compared

with Jiji et al. approach, sharp boundaries can be achieved by our method, thus making

the result look natural. Now, we show the results of the proposed learning technique for

the upsampling factor q = 4. We use Image 1, Image 2 and Image 3 displayed in Figure

4.6 as the test images and obtain the initial HR estimates of size 256� 256. The results



4.8 Experimental Results 83

Image 4

Image 5

(a) (b)

(c) (d)

Figure 4.8: Results of learning the initial high resolution estimates for the test images
of size 128 � 128 shown in Figure 4.6 (q = 2). (a) Ground truth image, (b) Images
expanded using the bicubic interpolation, (c) initial HR estimates obtained using the ap-
proach proposed in [3], and (d) initial HR estimates obtained using the proposed learning
technique.
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Image 1

Image 2

Image 3

(a) (b) (c)

Figure 4.9: Results of learning the initial high resolution estimates for the test images of
size 64�64 shown in Figure 4.6 (q = 4). (a) Image expanded using bicubic interpolation,
(b) initial HR estimates obtained using the approach proposed in [3], and (c) initial HR
estimates obtained using the proposed wavelet based learning technique.
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Image MSE for q = 2
Size of Bicubic Jiji et al. Proposed

Test image interpolation approach [3] approach
1 64� 64 0.023297 0.023067 0.021457
2 64� 64 0.007912 0.011166 0.007977
4 128� 128 0.044262 0.043209 0.043193
5 128� 128 0.110873 0.110061 0.107358

MSE for q = 4
1 64� 64 0.152321 0.157115 0.150864
2 64� 64 0.020358 0.024838 0.013204
3 64� 64 0.021795 0.024328 0.017989

Table 4.1: Mean squared error comparison for the initial HR estimate obtained using
di�erent techniques.

Image Learning Time
(in seconds)

q = 2 q = 4
1 91.350 688.508
2 91.332 867.630
3 - 691.854

Table 4.2: The computational complexity of the proposed algorithm in terms of time
required for learning the initial HR estimate for q = 2 and q = 4.

are shown in Figure 4.9. In this Figure, the �rst column (a) shows the images expanded

using bicubic interpolation. The columns (b) and (c) show the images learned using Jiji

et al. approach and the proposed approaches, respectively. Comparison of these images

shows that the learned images using proposed technique exhibit sharp edges and better

texture. This is expected as we learn the edges using a data set that has true LR-HR

images. The boundary regions in the images are not reconstructed well as we assume zero

values for the pixels outside the image. This can be reduced by performing mirroring on

the boundaries prior to processing. The quantitative comparison of these images is shown

in Table 4.1. It can be clearly observed that the MSE for the proposed learning approach

is less than that for the approach of Jiji et al.[3]. The results obtained for both q = 2 and

q = 4 shows perceptual as well as quanti�able improvements over bicubic interpolation

and Jiji et al. approach.

Table 4.2 shows the computational complexity of the proposed learning algorithm in

terms of the time required for learning the initial HR estimates for q = 2 and q = 4.
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From the values given in table we observe that for q = 4 the time for learning is higher

as compared to that for q = 2. This is because we use two step operation for q = 4

while learning. The use of one step operation reduces the computation time. However,

as already pointed out it su�ers from the exponential error propagation while learning.

Thus we compromise speed for better accuracy.

4.8.2 Experimental Results on Super-resolution

Let us now see how well we can super-resolve a given low resolution observation. First

we present the results on super-resolution for gray scale images. The observed images

are super-resolved using the proposed regularization framework formulated as an MAP

estimate. The regularization makes use of the decimation matrix entries and the IGMRF

parameters, both of which are estimated using the learned initial HR estimate. We use

the same low resolution observations as used in the previous experiment. Once again

the results obtained are compared with the approach proposed in [3]. The comparison

is also shown with the use of bicubically interpolated image as the initial HR estimate.

While using the bicubic interpolation as the initial estimate for regularization we use

the decimation and the IGMRF parameters estimated by the same. Figure 4.10 shows

the results for the upsampling factors of 2 (q = 2) and 4 (q = 4). In Figure 4.10(a)-(c)

we show the results for q = 2, and in Figure 4.10(d)-(f) we show the results for q = 4.

Figure 4.10(a) and Figure 4.10(d) show the super-resolved images using the MRF and

wavelet priors [3]. In Figure 4.10(b) and Figure 4.10(e) we display the upsampled images

by using the bicubic interpolation as the initial HR estimate while in Figure 4.10(c) and

Figure 4.10(f) correspond to the results obtained using the learned image as the initial

HR estimate. We can observe that in image 1, the characters G and H on the keyboard

are clearly visible in Figure 4.10(c) and (f). The window grills are well preserved in

the image 2 for the proposed method. Similarly we can see improvements in image 3

when we use the proposed method. We can clearly observe that the eyes and the mouth

regions have better details. Also the text behind the person is clearly readable. It can

be seen from the comparison of images in Figure 4.10(b) and (c) as well as images in

Figure 4.10(e) and (f) that the learned initial HR estimate produces better �nal solution

when compared to using the bicubically interpolated image used as the initial estimate.
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Image 1

Image 2

Image 3

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Results for gray scale images, (a)-(c) for q = 2 and (d)-(e) for q = 4. Images
in (a) and (d) correspond to super-resolved (SR) images using MRF prior and wavelet
prior as in [3]. Images in (b) and (e) correspond to the upsampled images using the
bicubic interpolated as initial HR estimate obtained while regularization. Images in (c)
and (f) correspond to super-resolved (SR) images using the proposed approach.
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Image MSE for q = 2
MRF and Wavelet IGMRF prior with initial

priors estimate obtained using
bicubic proposed learning

interpolation based approach
1 0.020006 0.022300 0.018699
2 0.007295 0.007524 0.007222
3 0.008429 0.008722 0.008185

MSE for q = 4
1 0.143968 0.151608 0.143925
2 0.018288 0.019993 0.013204
3 0.018367 0.021021 0.017989

Table 4.3: Performance comparison in terms of mean squared error for the gray scale
image super-resolution.

This is because the decimation entries and the IGMRF parameters estimated from the

learned initial HR estimate are close to the true values when compared to those estimated

from the bicubically interpolated initial estimate. The comparison of the performance

in terms of the mean squared error is shown in Table 4.3. We see that the MSE using

the proposed learning based approach is less when compared to that obtained using the

bicubic interpolation as the initial estimate as well as with that proposed in [3].

We now show the experiments for color image super-resolution. As we have discussed

earlier the luminance component of the color image is super-resolved using the proposed

learning based method and the chrominance components are interpolated in the wavelet

domain. The super-resolved color image is then obtained by applying color space transfor-

mation on the super-resolved luminance component and interpolated chrominance com-

ponents. The results are compared with the bicubic interpolation, the approach proposed

in [3], and the single frame super-resolution approach proposed by Kim and Kwon [4].

In the later method for super-resolution, the database consists of HR images and their

downsampled versions. For this experiment we show the results for an upsampling factor

of 4 only. Figure 4.11 shows the observed color images. Image 1, Image 2 and Image

3 are chosen as test images from the database hence the true high resolution image is

available for comparison. Image 4 is captured using a low resolution camera other than

the one used to capture the images for the database. Figure 4.12(a) shows the images

obtained using bicubic expansion and Figure 4.12(b) shows the super-resolved images ob-

tained using the MRF and wavelet priors proposed in [3]. The results of super-resolution
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Image 1 Image 2 Image 3 Image 4

Figure 4.11: Low resolution observed color images. Image 1, Image 2 and Image 3 corre-
spond to LR database images while Image 4 is captured using a di�erent low resolution
camera.

using the method proposed in [4] is shown in Figure 4.12(c). Finally, in Figure 4.12(d)

we display the results obtained using our approach. Comparison of the �gures show more

clear details in the super-resolved images using the proposed approach. Figure 4.12(b)

shows that the algorithm in [3] generates smoothed edges and perceptually distracting

color artifacts. In the images shown in Figure 4.12(c), the color artifacts are disappeared,

however edges are smoothed. It can be seen from Figure 4.12(d) that the edges in window

panes in the image 1 are well preserved while using the proposed approach. Once again as

in the gray scale image super-resolution the text behind the person in image 2 is clearly

readable as compared to that in Figure 4.12(a)-(c). Also in the same image the spectacle

glasses and the lips look clearer. In image 3, the eyes and nostrils look sharper in Figure

4.12(d). The smooth region like cheeks look better. As mentioned earlier, Image 4 is

captured using a low resolution camera other than that used to construct the database.

In this image the horizontal and vertical bars of the gate appear clear as compared to that

in Figure 4.12(a)-(c). From this result it can be seen that the algorithm works for images

captured using di�erent cameras as well. In each of the images super-resolved using the

proposed method the natural correspondences between the R, G and B components are

in balance and there are no color artifacts. Among the images super-resolved using the

proposed approach, Image 1, Image 2 and Image 4 are better reconstructed as compared

to Image 3 is. It appears that on these three images, the high frequencies are well learned

by the algorithm. The reason behind it is that these images contain more edges in ver-

tical, horizontal, and diagonal directions. Since the wavelets capture the edges in these

directions well, better super-resolution is achieved on these images. Poor reconstruction

of the Image 3 is due to the inherent limitation of the wavelets that they are inferior in

acquiring the geometry of edges. The comparison using the mean squared error for color

super-resolution is shown in Table 4.4. We see from the table that the super-resolved im-

ages using the proposed technique have comparable MSE with the other methods. The
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Image 1

Image 2

Image 3

Image 4
(a) (b) (c) (d)

Figure 4.12: Results on the color images for q = 4. Images in each column correspond
to (a) image expanded using bicubic interpolation, (b) super-resolved (SR) image using
MRF prior and wavelet prior as in [3], (c) SR image using example based single image
super-resolution proposed by Kim and Kwon in [4], and (d) SR image using the proposed
method.
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Image MSE
bicubic Jiji et al. Kim and Kwon Proposed

interpolation approach in [3] approach in [4]
1 0.312001 0.610422 0.318010 0.307506
2 0.089783 0.064304 0.125707 0.075376
3 0.186941 0.198895 0.180958 0.169560

Table 4.4: Performance comparison in terms of mean squared error for the color super-
resolution (q = 4). We have not shown MSE comparison for image 4 because the actual
HR image is not available.

proposed algorithm performs better in terms of quality with lower quantitative errors,

less blocky regions and better high spatial-frequency information preservation such as

sharp edges.

4.9 Conclusion

We have presented a new approach for super-resolution restoration of a single image

using wavelet based learning technique. The missing high frequency details are learned

from a database consisting of low resolution images and their high resolution versions

all captured by varying resolution settings of a real camera. Since the database does

not contain synthetic training images, the learning algorithm e�ectively captures the

true relationship of the spatial features between LR images and HR images. The super-

resolved image is obtained using an MAP estimate using an inhomogeneous Gaussian

MRF model as a prior. Both the model parameters as well as the decimation are estimated

using the learned high resolution estimate. The use DWT based learning technique

increases the sharpness of the images by selecting the best high resolution edges from

the database, while the use of the locally adaptive IGMRF prior ensures a proper spatial

correlation among pixel intensities along with discontinuity preservation. The another

advantage of using IGMRF model for super-resolved image lies in having a di�erentiable

cost function where a gradient-based optimization method can be used. The quality of

the super-resolved gray scale images is quite good. We have extended the algorithm to

super-resolve the color images, where the luminance component is super-resolved using

proposed technique and the chrominance components are interpolated using the wavelet

transform. The super-resolved gray image as well as the color images using the proposed
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method are less noisy in constant areas and preserve the textures and sharp details in

other regions. Results on real world images show this approach to be superior to existing

SR in terms of �delity to the ground truth high-resolution images. Through the proposed

super-resolution approach, we are able to obtain a high resolution of an image captured

using commercially available low resolution camera �tted with limited memory.

It is necessary to point out that the proposed approach have some drawbacks. An

inherent limitation of the learning algorithm is that it has a strict separating line for

upsampling factors. The learning process is very much resolution dependent, restricting

the super-resolution to powers of 2 only. Since the wavelet transform decompose an image

into the number of subbands that is a power of 2, one can not perform learning for super-

resolution for upsampling factors that are not powers of 2, such as 3, 5 etc. Another

drawback of the learning approach arises due to the use of the multi-step operation for

learning. Learning for upsampling factor 2, requires 2 training images in each set in the

database, while that for upsampling factor 4, requires 3 training images in each set. Thus

each octave increase in the upsampling factor requires an additional high resolution image

in each set of the training images.

Failure of wavelets in e�ciently handling the intrinsic geometrical structures in natural

images is an another major di�culty with the proposed learning algorithm. Although the

wavelet transform has been proven to be powerful in learning edges in horizontal, vertical

and diagonal directions, wavelets are not optimal in capturing the edges in arbitrary

directions. A better way is to use a di�erent image representation that can e�ciently

handle geometric structures in real world images. The work presented in the next chapter

involve modi�cations to the learning approach through the use discrete cosine transform

for the SR image to improve results.



Chapter 5

DCT Based Learning Technique

A variety of handheld devices such as digital cameras, cellular phones, personal digital

assistants are prevalent these days. These personal and/or home electronic devices pro-

vide accessibility and convenience for users in many applications, such as communicating

with other people, learning the latest information, acquiring multimedia content. The

demand for audiovisual capabilities in these devices has arisen from consumers. However,

while the race for extra functionalities in a single device is on, the performance of these

extensions are often not very satisfactory. Due to limited computational power, and stor-

age, the quality of multimedia contents in these integrated products is not comparable to

that of dedicated ones. The image/video size is small and the compression is often severe.

The discrete cosine transform (DCT) is widely used for image and video compression in

these devices. Since the DCT is the basis of many popular codecs such as JPEG, MPEG

and H.26X, we investigate the task of improving the resolution of an undersampled image

using the DCT for learning.

The motivation behind using the discrete wavelet transform in the learning techniques

in the previous chapter was its ability to capture the edges across scales and computa-

tional advantage o�ered by the property of the separability of the wavelet kernels. The

drawback for wavelets in two dimensions is their limited ability in capturing directional

information. Since the DCT based learning algorithm can capture the intrinsic geomet-

rical structures in natural images, it helps to overcome this de�ciency. The proposed

learning algorithm searches the �ne details of the super-resolved image from the data-

base of LR-HR images and recover the geometrical structures in natural image. We �rst

obtain the close approximation to the high resolution image using a new learning tech-

93
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nique based on DCT and then use regularization framework to obtain the solution. The

true scene may contain regions with a wide variety of textures and may have continuously

changing textures. The homogeneous models will not be appropriate in such cases. This

motivates us to consider an inhomogeneous prior which can adapt to the local structure

of the image. In this chapter, we explore the use of non-homogeneous autoregressive

model to represent the super-resolved image �eld and reconstruct the super-resolution.

We represent the super-resolved image using and derive the model parameters from the

approximation and use the same while minimizing the cost function.

5.1 Previous Work

In [76], the authors propose a super-resolution technique using zoom cue. Here the SR

image is modeled as a homogeneous AR model and the model parameters are obtained

using the most zoomed image. The drawback of the proposed method is that they

assume that the entire SR region is homogeneous which is not true for real images.

In [160] Krishna and Joshi propose a model based multiresolution fusion in which the

regularized solution is obtained using the nonhomogeneous AR parameters estimated

from the Panchromatic image. In chapter 4, we �rst learn an initial HR estimate and

use a inhomogeneous Markov random �eld (IGMRF) as the prior for regularization. A

wavelet based learning was used to obtain the initial estimate and the IGMRF model

parameters were estimated using the local gradient as the standard deviation. Although

the method works well and has advantages when compared to using a homogeneous AR

prior, it has the following drawbacks:

1. The initial high resolution estimate obtained using wavelet based approach assumes

that a primitive edge element is con�ned to a local region which is not true in

practice. Also the learned edges are limited to horizontal, vertical and diagonal

directions. This leads to an initial estimate that may not be a close approximation

to the super-resolved image.

2. The IGMRF parameters estimated at every location are based on the approach

proposed in [157]. Here the authors use a Maximum Likelihood (ML) estimate

and use a simple approximation of the local variance for parameter estimation in
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order to reduce the computational complexity. This leads to estimated IGMRF

parameters much di�erent from their true values. Also since these parameters are

estimated using the initial HR derived from the wavelet based learning it causes

larger errors in estimated parameters.

5.2 Learning Using Discrete Cosine Transform

In previous chapter we used the discrete wavelet transform for learning high frequency

information. Although the wavelet transform is proved to be powerful in many signal and

image processing applications, the drawback for wavelets in two dimensions is their limited

ability in capturing directional information. Since the wavelets are good at capturing

edges in vertical, horizontal and diagonal directions only, the wavelet based learning

algorithms fail to search the best matching high frequency details corresponding to the

directional edges and geometrical structures in other directions.

In this chapter, we explore the use of the DCT for predicting the missing high-

frequency information. We use a database of images with high-quality texture to predict

the missing high-frequency information in the LR inputs. We obtain the close approxi-

mation to the high resolution image using a new learning technique based on DCT. We

derive the nonhomogeneous AR model parameters from the this approximation and use

the same while minimizing the cost function.

5.2.1 Discrete Cosine Transform

The discrete cosine transform was introduced by Ahmed and his colleagues in 1974

[161, 162, 163]. It is extensively used orthogonal transform used in various schemes

of digital image coding. The DCT outperforms the other orthogonal transforms due to

its good properties such as separability, invertibility and energy compaction. The DCT is

used in JPEG and MPEG standards for still image compression and video compression,

respectively. Considering this fact, we exploit the use of DCT in the learning approach.

The proposed learning approach can readily be extended for super-resolving compressed

images/video so that it does not require decoding of low-resolution images/video prior to

learning the close approximation of the high resolution video.
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5.2.2 The Approach

In this section, DCT based approach to learn high frequency details for the super-resolved

for a decimation factor of 2 (q = 2) is described. Each set in the database consists of a

pair of LR image and its HR version. The test image and LR training images are of size

M �M pixels. Corresponding HR training images have size of 2M � 2M pixels. We �rst

upsample the test image and all LR training images by factor of 2 and create images of

size 2M � 2M pixels each. A standard interpolation technique can be used for the same.

We divide each of the images, i.e. the upsampled test image, upsampled LR images and

their HR versions, in blocks of size 4� 4. The motivation for dividing into 4� 4 block is

due to the theory of JPEG compression where an image is divided into 8 � 8 blocks in

order to extract the redundancy in each block. However, in this case we are interested

in learning the non aliased frequency components from the HR training images using the

aliased test image and the aliased LR training images. This is done by taking the DCT

on each of the block for all the images in the database as well as the test image. Figure

5.1(a) shows the DCT blocks of the upsampled test image whereas Figure 5.1(b) shows

the DCT blocks of upsampled LR training images and HR training images. For most

images, much of the signal energy lies at low frequencies (corresponding to large DCT

coe�cient magnitudes); these are relocated to the upper-left corner of the DCT array.

Conversely, the lower-right values of the DCT array represent higher frequencies, and

turn out to be small. We compare the DCT coe�cients in each block of the upsampled

test image with that of the blocks of LR training images and �nd best matching block.

We then copy the DCT coe�cients from the corresponding block in the HR version of the

LR image to the block under consideration. Thus for a particular block in the test image,

we make use of all the blocks in every upsampled LR training image for learning HR

DCT coe�cients. It is reasonable to assume that when we interpolate the test image and

the low resolution training images to obtain 2M � 2M pixels, the distortion is minimum

in the lower frequencies. Hence we can learn those DCT coe�cients that correspond to

high frequencies (already aliased) and now distorted due to interpolation. Let CT (i; j),

1 � i; j � 4, be the DCT coe�cient at location (i; j) in a 4 � 4 block of the test image.

Similarly, let C
(m)
LR (i; j) and C

(m)
HR (i; j),m = 1; 2; : : : ; L, be the DCT coe�cients at location

(i; j) in a block in the mth upsampled LR image and mth HR image, respectively. Here
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(a) (b)

Figure 5.1: Learning DCT coe�cients from a database of sets of LR-HR images for
q = 2. (a) Upsampled test image and (b) sets of upsampled LR images and HR images
for di�erent scenes. DCT coe�cients for the shaded locations in the upsampled test
image are copied from corresponding locations of the best matching HR image.
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L is the number of the training sets in the database. Now the best matching HR image

block for the considered test image block (upsampled) is obtained as,

l = argmin
m

X
i+j>Threshold

kCT (i; j)� C
(m)
LR (i; j)k2: (5.1)

Here, l is the index for the training image which gives the minimum for the block. Those

non aliased DCT coe�cients from the corresponding block in best matching HR image

are now copied in the block of the upsampled test image. In e�ect, we learn non aliased

DCT coe�cients for the test image blocks from the set of LR-HR images. The coe�cients

that corresponds to low frequencies are not altered. Thus at location (i; j) in the block,

we have,

CT (i; j) =

8<
: C

(l)
HR(i; j) if (i+ j) > Threshold,

CT (i; j) else.

This is repeated for every block in the test image. After learning the DCT coe�cients

for entire test image, we take inverse DCT transform to get high spatial resolution image

and use it as the close approximation to the HR image. The pseudocode of the proposed

technique is provided in Algorithm 5.1.

In order to �x the threshold, we conducted experiment using di�erent Threshold

values. We begin with Threshold = 0 where all the 16 coe�cients in each 4� 4 block are

learned. The �rst image of the �rst row in Figure 5.2 show the learnt image. The image

is highly degraded. We then set Threshold to 2, where all the coe�cients except the DC

coe�cient (i = j = 1) in each block are learned, and obtain the image shown in the second

image of the �rst row in the same �gure. There is a little improvement but still it is hard

to interpret the content if the image. The subsequent increase in the Threshold value

(up to Threshold = 4) reduces the degradation. The fourth image in �rst row, obtained

by with Threshold = 4 is the most clear. As can be seen from the images in the second

row, further increase in the Threshold value introduces blockiness in the learned image.

Reason for such behavior is that for the values of Threshold beyond 5, the number of

DCT coe�cients learned in each block of 4� 4 decreases from 5 for Threshold = 6 to 0

for Threshold = 8. Thus, for the higher values of Threshold the contribution of learned

DCT coe�cients reduces and hence there is little or no improvement in the interpolated

image. The mean squared errors of the images learned for di�erent Threshold values are
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Algorithm 5.1: Learning the HR approximation using DCT

Data: low resolution test image and a database of LR-HR training images
Result: close approximation to the HR image
upsample the test image;
divide the test image into blocks of size 4� 4 pixels;
perform DCT transform on each block in the test image;
initialize an array cost for each block in the test image;
initialize a matrix hrdct for reconstructed DCT image;
foreach LR training image in the database do

upsample the LR training image;
divide the upsampled LR training image and its HR version into blocks of size
4� 4 pixels;
perform DCT transform on each block in both the training images;

end

foreach block in the test image do
foreach LR training image in the database do

calculate sum of the squared di�erences between high frequency DCT
coe�cients in the block of the test image and those in the corresponding
block in LR training image;
if sum < cost then

cost = sum;
copy the high frequency DCT coe�cients from the corresponding block
in the HR training image to hrdct ;

end

end

copy the low frequency DCT coe�cients from the block in the test image to
hrdct ;

end

obtain the close approximation to the HR image by taking inverse DCT of hrdct ;

Threshold = 0 Threshold = 2 Threshold = 3 Threshold = 4

Threshold = 5 Threshold = 6 Threshold = 7 Threshold = 8

Figure 5.2: Learnt images with di�erent Threshold values.
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Threshold MSE
0 0.036874
2 0.028089
3 0.017775
4 0.017483
5 0.017900
6 0.018458
7 0.019079
8 0.019866

Table 5.1: MSE Comparison of images learned with di�erent Threshold values.

given in Table 5.1. It can be seen that the best results are obtained when the Threshold

is set to 4 that corresponds to learning a total of 10 coe�cients in a block.

5.2.3 Results on DCT Based Learning Technique

In order to evaluate the performance of the proposed learning technique, we conducted

the experiment on a couple of real world images. The test images were of size 64 � 64

and the learning technique was applied for upsampling (decimation) factors of q = 2.

Thus the size of the learned high resolution images was 128�128. The database includes

LR-HR images of 750 indoor as well as outdoor scenes captured at di�erent times under

varying conditions. Thus the proposed learning technique uses a total of 750� 2 = 1500

images, while learning. LR-HR pairs were captured by varying the zoom setting of a

camera. The results of the proposed technique are compared with that of the DWT

based learning technique as well as that of bicubic interpolation.

We display the results of the proposed learning approach in Figure 5.3. Figure 5.3(a)

and (b) show the LR observations and corresponding ground-truth images, respectively.

The standard bicubic interpolation (Figure 5.3(c)) gives fairly smooth results. High

resolution images learned using DWT and DCT are shown in Figure 5.3(d) and (e),

respectively. Visually, the di�erences between the images are subtle. The texture and

curvatures in the images displayed in the rightmost column are better de�ned. Images

learned using DWT exhibit sharp edges along horizontal, vertical and diagonal directions

only. It can be seen from these images that the edges appear slightly arti�cially crisp.

True enhancement is achieved in images obtained using DCT based learning technique.

As is expected the proposed technique manages to reconstruct most of the primary edges.
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Image 1

Image 2

Image 3

(a) (b) (c) (d) (e)

Figure 5.3: Qualitative comparison of di�erent techniques for image expansion. (a) ob-
served images, (b) original high resolution images, (c) expanded images using bicubic
interpolation (d) learnt images using a wavelet based technique and (e) learnt images
using proposed DCT based approach.

The curves along the Devnagari text in image 1 and curves of eyes and noses in Image

2 and Image 3 look sharper. From these �gures, it can be seen that the textures better

retrieved by wavelets are all characterized by dominant vertical, horizontal, or diagonal

directions, which are the only directions captured well by wavelets. In contrast, the

textures better retrieved by the DCT exhibit more diverse directional components. This

shows the superiority of the DCT in capturing directional information. The quality

of the reconstruction is assessed by means of the mean squared error (MSE) between

reconstructed and original. The MSE values for the learned HR images are summarized

in Table.5.2. The numerical results obtained using DCT for learning are superior than

those obtained using DWT for learning.
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MSE
Image Bicubic Wavelet Based DCT Based

Expansion Learning Learning
Image 1 0.020649 0.019470 0.017483
Image 2 0.005415 0.004573 0.004398
Image 3 0.003354 0.003133 0.002845

Table 5.2: Performance comparison of the DCT based learning technique with the other
methods.

5.3 Proposed Approach for Super-resolution

The super-resolution problem is an ill-posed problem. Given an LR image, the estimation

of the HR image maximizing any of the conditional distributions that describe the image

formation model is a typical example of an ill-posed problem. Therefore, we have to

regularize the solution or, using statistical language, introduce a priori models on the HR

image. We continue with the image formation model described in section 4.4. We �rst

apply DCT based learning technique to learn the high frequency content of the super-

resolved image using a database of training images consisting of LR-HR pairs. While

learning the DCT coe�cients we look for the non aliased frequency components using

HR training images. The learned HR image is used as a close approximation to the �nal

solution. We use a nonhomogeneous AR model as prior and estimate the prior parameters

using the learned HR image. The �nal cost function, consisting of data �tting term and

a prior term is minimized using gradient descent optimization.

5.3.1 Segmentation of the Learned Image

Accurate estimates of the prior model parameters are critical for the super-resolution

problem. The parameters estimated by considering the entire image as a homogeneous

region is less accurate as compared to true parameters. Better estimation of the param-

eters can be obtained by considering the image as a combination of several homogeneous

regions and estimating the parameters for each of the regions separately. Further, regular-

izer using the homogeneous prior model imposes the smoothness constraint everywhere

in the image. It determines the constant interaction between neighboring points and

leads to overall smoothing. The homogeneous or isotropic application of the smoothness

constraint inevitably leads to oversmoothing at discontinuities at which the derivative is
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Image 1 Image 2 Image 3

Figure 5.4: Segmented images. (Each image is segmented into 7 homogeneous regions.)

in�nite. Since the natural image consists of smooth regions, texture regions and edge

it has to be represented as nonhomogeneous region. We consider the nonhomogeneous

region as a combination of a number of homogeneous regions and expect the images to

be smooth within homogeneous regions. We divide the learned HR image into a number

of homogeneous regions and use the segmented image to learn nonhomogeneous AR prior

model parameters.

In order to segment the learned image, we employ Gaussian mixture model (GMM)

and estimate the model parameters for each region in terms of the mean and variance. We

use Expectation Maximization algorithm to assign label to each pixel in the image. The

resulting segmented images are shown in Figure 5.4. We then estimate AR parameters

for each of the segmented regions.

5.3.2 Texture Modeling

As described in section 5.3.1, the HR image is segmented into a number of homogeneous

regions. In a homogeneous region, the linear dependency of a pixel to its neighbors can

be represented using an AR model. Let the image Z = fZkjk = 1; : : : ; Kg be an image

consisting of K homogeneous regions. The intensity of the pixel at location s = (i; j) in

kth homogeneous region can expressed as the linear combination of the intensities of the

pixels in the neighborhood r of that pixel. Mathematically, the AR model to the pixel at

location s can applied as,

zk(s) =
X
r2Ns

�k(r)zk(s+ r) +
p
�nk(s); (5.2)
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where Ns is the neighborhood of pixel at s, r is a neighborhood index with r 2 Ns, �k

are the AR parameters for kth region and nk(:) is an i.i.d. noise with zero mean and unit

variance. We use �fth order neighborhood for every region. This requires a total of 24

parameters to be estimated for every region. We estimate these parameters using simple

least squares method.

5.4 Super-resolving the Image

Since we have introduced both prior and conditional distributions, we can apply the

Bayesian paradigm in order to �nd the maximum of the posterior distribution of HR

image given the observation. Our goal is to �nd ẑ that satis�es,

ẑ = argmin
z

"
k y�Dz k2

2�2n
+ �CAR

#
; (5.3)

where CAR is the prior term which can be represented as,

CAR =
X
k

X
i;j2k

�
zk(s)�

X
r2Ns

�k(r)zk(s+ r)
�2
; (5.4)

and � is a suitable weight for the same. Since both the data �tting term and the nonho-

mogeneous AR prior term in above cost function are linear terms, it can be minimized

using simple gradient descent optimization technique. processors

5.5 Experimental Results

In this section, we present the results of the proposed method for the super-resolution.

We compare the performance of the proposed method with other methods on the basis

of perceptual quality as well as using a quantitative measure. All the experiments were

conducted on real images. All the test images are of size 128� 128 pixels and the super-

resolved images are of size 256� 256 pixels. We show the quantitative comparison using

mean squared error (MSE).

Figure 5.5 and Table 5.3 show the perceptual and quantitative comparison of perfor-

mance of the proposed approach with that of bicubic interpolation method and super-
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Image MSE
bicubic homogeneous Proposed

interpolation AR model
Image 1 0.069449 0.068504 0.064889
Image 2 0.062587 0.060049 0.059856
Image 3 0.079001 0.074469 0.070992

Table 5.3: Mean squared error comparison.

resolution approach using homogeneous AR prior. The LR observed images are displayed

in Figure 5.5(a) and images expanded using bicubic interpolation are shown in Figure

5.5(b). The images super-resolved using homogeneous AR technique and using proposed

technique are shown in Figure 5.5(c) and Figure 5.5(d), respectively. As to be expected,

bicubic interpolation has the highest MSE, because it doesn't add any resolution, but

rather averages out the observed information. The visual comparison shows that bicu-

bic interpolation produces smooth images and the super-resolution techniques preserve

textures and edges in the images. In Image 1, the edges of tiles and the stone texture

appear sharp as compared to that obtained using homogeneous AR technique. From the

Table, it can be seen that the MSE of the Image 1 super-resolved using proposed ap-

proach is signi�cantly reduced. In Image 2 super-resolved using proposed approach, the

improvement is clearly visible in the text written on the black background. Edges of the

characters in this text are better preserved. The MSE is also less compared to that of the

images obtained using other methods. Although, Image 3 super-resolved using our ap-

proach look perceptually similar to that obtained using homogeneous AR technique, the

improvement in MSE can be seen from Table 5.3. Qualitatively, the results for proposed

super-resolution approach are signi�cantly better than the other approaches.

5.6 Conclusion

We have presented a technique to super-resolve a single image captured using a low cost

camera. The high frequency content of the super-resolved image is learned in form of

DCT coe�cients using a database of low resolution images and their high resolution ver-

sions. The suggested learning technique yields better close approximation to the solution

as compared to that obtained using wavelet based learning technique. The proposed
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Image 1

Image 2

Image 3

(a) (b) (c) (d)

Figure 5.5: Perceptual comparison of the results. (a) The observation, (b) image ex-
panded using bicubic interpolation, (c) super-resolved image using homogeneous AR
model and (d) super-resolved image using nonhomogeneous AR model.
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learning algorithm can be straightforwardly extended to incorporate learning for images

compressed using DCT. The LR observation is represented using linear model and non-

homogeneous AR model is used as prior for regularization. The observed image is divided

into several homogeneous regions and the model parameters for each of the homogeneous

regions are estimated from the close approximation obtained using DCT based learning

technique. The cost function consisting of a data �tting term and a linear prior term is

optimized using simple gradient descent technique. The proposed method yields better

results considering both smoother regions as well as texture regions. It may be concluded

that with learning the additional knowledge using the DCT, we have been able to add

some structure to our solution and thereby bring more information.





Chapter 6

A Fast Approach to Learning Based

SR Using Zoom cue

In chapter 3, we addressed the problem of super-resolving an image using zoomed obser-

vations captured by varying the zoom setting of a camera. In this problem, we modeled

the super-resolution image as a MRF �eld and the MRF model parameters were adjusted

by trial and error approach. We used MAP estimation and arrived at a convex cost func-

tion. The super-resolution was recovered by optimizing the cost function using simple

and fast gradient descent technique. Here, MRF prior served as smoothness constraints

to regularize the solution. However, the imposition of the smoothness constraints 
attens

the entity to be super-resolved causing distortion along the discontinuities and �nally

leads to undesired smoothed solutions. This approach cannot provide details of pixels

representing lines, edges, corners, and texture regions. Since, the pixels with signi�cant

change in intensities carry important information, it is necessary to prevent them being

smoothed while regularization. In order to prevent the discontinuities, MRF prior with

line �elds can used [1]. The resulting non convex cost function needs to be optimized

using global optimization technique.

In this chapter, we solve the problem formulated in section 3.3. We model the super-

resolved image using MRF and incorporate line �elds in order to preserve the discon-

tinuities. We �rst obtain a close approximation to the super-resolved image by using

a learning based approach and learn both the aliasing and the discontinuity preserving

MRF prior parameters using this approximation. We derive a non convex cost function

and minimize it using a computationally e�cient particle swarm optimization technique.

109
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Although there is some overlap with the work in [1], novelty of our work is as under.

� We obtain close HR approximation to the super-resolved image using the DCT

based learning technique that uses the database of low resolution images and their

high resolution versions. We use the close HR approximation as an initial guess

while optimizing unlike using expanded image obtained by successive bilinear in-

terpolation in [1].

� The authors in [1] select MRF model parameters on trial and error basis. Since,

accurate parameters play important role in reconstructing the true HR image, we

estimate the same from the close HR approximation. We expect that the estimated

parameters are close to their true values.

� The decimation model used in [1] is based on the assumption that the aliased

low resolution pixel intensity of an image point is always an equally weighted sum

of the high resolution intensities. However, in practice, the observed intensity at

a pixel captured due to low resolution sampling depends on various factors and

hence it has to be estimated. We estimate decimation (aliasing) using the close HR

approximation and low resolution observations.

� While using the discontinuity preserving MRF prior, we employ particle swarm op-

timization technique and thus avoid the use of computationally taxing optimization

techniques such as simulated annealing.

6.1 Problem Formulation

Although the problem formulation is described in section 3.3, we present it here brie
y for

the sake of convenience. Let fYigpi=1 be a set consisting of p low resolution observed im-

ages each of which is obtained by adjusting the optical zoom. The size of each observation

isM�M pixels. The relationship between these low resolution images and the high reso-

lution image is shown in Figure 6.1. Here the most zoomed image of the scene Y3 has the

highest resolution. The least zoomed image Y1, corresponding to the entire scene, needs to

be upsampled to the size of (l1l2 � � � lp�1)�(M�M) = (N�N) pixels, where l1; l2; : : : ; lp�1

are the zoom factors between observed images of scene Y1Y2; Y2Y3; : : : ; Y(p�1)Yp, respec-

tively. Given Yp, the remaining (p � 1) observed images can be modeled as aliased and



6.2 Proposed Approach 111

Figure 6.1: Illustration of observations at di�erent zoom levels. Here Z is the super-
resolved image, Y1 and Y3 are the least zoomed and the most zoomed observations,
respectively.

noisy versions of this single high-resolution image (Z) of appropriate region. Note that

although the observations are of same size, they are at di�erent spatial resolutions. We

write the forward model for the observed images as expressed in [1].

ym = DmCmz+ nm; (6.1)

where m = 1; 2; : : : ; p. Here y, z and n are vector representation of the observed image,

super-resolved image and noise respectively. C is cropping operator and D is aliasing

matrix. The noise n is assumed to be independent and identically distributed with zero

mean and variance �2n. Now the problem is to estimate z given yms which is an ill-posed

problem and requires proper regularization.

6.2 Proposed Approach

The proposed SR approach consists of two basic processes, namely a learning process and

a regularization process. In the training process, we obtain a close approximation to �nal

super-resolved image using the DCT based learning technique where the high frequency

contents are learned from a database consisting of LR images and their HR versions. We

learn decimation (aliasing) from this close SR approximation and the zoomed observa-

tions. For regularization, we represent the HR image by a discontinuity preserving MRF

prior using line �elds. The model parameters are estimated from the close approximation

using homotopy continuation method [5]. We propose the use particle swarm optimiza-
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tion technique for minimizing the non convex cost function. The particles required for

optimization are obtained using existing image expansion techniques as well as using

learning based techniques.

6.2.1 Learning the Close HR Approximation

We �rst obtain the close approximation to the super-resolved image using a learning

based method. We use the DCT based learning method described in section 5.2.2. We

have three observations Y1, Y2, and Y3 of size M �M each. We aim to super-resolve the

least zoomed observation Y1 at the resolution of Y3. The resolution of the observation Y2

higher than that of Y1 and lower than that of Y3. In order to get the best result, we learn

the HR estimate of size 4M�4M (q = 4) for the least zoomed observation using the DCT

based approach recursively. We then obtain the HR estimate of size 2M � 2M (q = 2)

for Y2 using same algorithm. We replace the centermost M �M region of this learned

image by the most zoomed observation Y3 as it is captured at the highest resolution. We

then obtain the close approximation of size 4M � 4M to the super-resolved image by

inserting the resulting 2M � 2M image of Y2 into the centermost 2M � 2M region of the

HR estimate of Y1.

Due to di�erent con�gurations of camera hardware and di�erent zoom settings, the

aliasing di�ers from image to image. Hence the aliasing has to be estimated. Since

the close approximation to the super-resolved image is now already available, we make

use of the same to obtain the decimation matrix entries and thus learn the aliasing

better. We use the least squares technique described in section 3.1.2 for learning the

decimation (aliasing). We also estimate the MRF model parameters from the same close

approximation.

6.2.2 Discontinuity Preserving MRF Prior Model

The MRF provides a convenient and consistent way of modeling spatially related features

in an image. The MRF model prior is extensively used to represent the local dependencies

among the pixels in images. Although this constraints helps to stabilize the optimization

process, it pushes the reconstruction towards smooth entity and causes the distortions

along discontinuities. In order to have a better reconstruction of natural images having



6.2 Proposed Approach 113

edges and varying textures, the simple MRF prior is to be amended with some mechanism

to take care of these discontinuities. In order to incorporate provisions for detecting such

discontinuities, Geman and Geman [164] introduced concept of line �elds located on a

dual lattice. One can de�ne horizontal and vertical line�elds on a lattice and choose

binary variables over these line �eld in order to detect the discontinuities in horizontal

and vertical directions, respectively. An on-state of the variable indicates that there exist

a discontinuity in form of high gradient between neighboring sites in the lattice.

Given an N �N lattice Z of sites f(i; j)j1 < (i; j) � Ng, one can de�ne a horizontal

line �eld L consisting of binary elements li;j that connect the site (i; j) to its neighboring

site (i � 1; j). The element li;j is set to 1 (i.e., on-state) if there exists a horizontal

discontinuity at the site li;j. Thus,

li;j =

8<
: 1 if jzi;j � zi�1;jj > �1,

0 else.

Here �1 is an appropriate threshold value that declares the horizontal discontinuity. Sim-

ilarly, a binary elements vi;j of vertical line �eld V connecting the site (i; j) to its neigh-

boring site (i; j � 1) is set to 1 (i.e., on-state) if there exists a vertical discontinuity at

the site li;j. Thus,

vi;j =

8<
: 1 if jzi;j � zi;j�1j > �2,

0 else,

where, �2 is a threshold value that declares the vertical discontinuity. In our experimen-

tation, the thresholds for detecting the horizontal and vertical discontinuities are kept the

same. Thus we have �1 = �2 = �. A trivial solution would declare a discontinuity at every

location. In order to declare discontinuities at genuine locations, each turn on of a line

�eld variable is penalized by a quantity 
 so as to prevent spurious discontinuities. The

energy function for Z with discontinuity �elds L and V obtained by modifying equation
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(3.13) is,

V (z) =
X
i;j

�
h
(zi;j � zi;j�1)

2(1� vi;j) + (zi;j+1 � zi;j)
2(1� vi;j+1)

+ (zi;j � zi�1;j)
2(1� li;j) + (zi+1;j � zi;j)

2(1� li+1;j)
i

+ 

�
vi;j + vi;j+1 + li;j + li+1;j

�
:

(6.2)

This energy function consists of the smoothness term and the penalty term to prevent

spurious discontinuities. Here parameters � and 
 correspond to the relative weights of

the smoothness term and the penalty term necessary to prevent occurrence of spurious

discontinuities. We estimate these parameters from the close HR approximation using

homotopy continuation method proposed in [5]. Since, this energy function is non convex,

there is a possibility of the steepest descent type of algorithms getting trapped in a

local minima. Hence global optimization technique needs to be used for obtaining MAP

estimates of the super-resolved image.

6.2.3 MAP-MRF Formulation

Using the data �tting term given by equation (6.1) and the energy function V (z), the

estimate of the super-resolved image using the MAP-MRF formulation can be obtained

as,

ẑ = argmin
z

"
pX

m=1

kym �DmCmzk2
2�2n

+ V (z)

#
: (6.3)

The cost function in equation (6.3) balances two types of errors. The left term is mini-

mized when a candidate z, projected through the observation model described by equa-

tion (6.1), matches the observed data. The right term is a regularization term, which

is necessary as directly minimizing the �rst term is an ill posed problem. The inclusion

of the binary line �elds makes the cost function non linear, which cannot di�erentiated.

Hence, it cannot be minimized using simple di�erentiation based optimization techniques.

Minimization of this cost function requires the use of global optimization techniques.

Global optimization techniques such as simulated annealing, graph-cuts are widely

used for optimization of non-convex cost function. Although a good initial guess for
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simulated annealing speed up the computation and lead to a global minima, it is com-

putationally demanding and takes a very long time for convergence. The graph-cuts

technique can be employed when the cost function is regular. Since the derived cost

function is not regular, graph-cuts techniques can not be used. In order to speed up

the convergence and reduce the computation time, we propose the use of particle swarm

optimization technique. It is a method for solving global optimization problems [165].

6.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a new evolutionary computation technique pro-

posed by Kennedy and Eberhart [166, 167]. The particle swarm concept was motivated

from the simulation of social behavior. The original intent was to graphically simulate

the graceful but unpredictable movement of bird 
ocking. The PSO algorithm mimics

the behavior of 
ying birds and their means of information exchange to solve optimiza-

tion problems. Each potential solution is seen as a particle with a certain velocity, and

\
ies" through the problem space. Each particle adjusts its 
ight according to its own


ying experience and its companions' 
ying experience. The particle swarms �nd optimal

regions of complex search spaces through the interaction of individuals in a population

of particles. PSO has been successfully applied to a large number of di�cult combinato-

rial optimization problems. Studies show that it often outperforms Genetic Algorithms

[168]. It has been seen that PSO has a strong search capability in the problem space and

can discover optimal solutions quickly. The advantages of the PSO technique are easy

implementation, no need of derivatives, very few parameters and ease of parallelization

for concurrent processing.

Recently, researchers have explored the use of PSO to solve variety of problems in

image processing and pattern recognition [169]. PSO is initialized with a population of

random solutions, called `particles'. The algorithm then searches for the best solution

through an iterative process. At every iteration, the �tness of each particle is evaluated

using the �tness function. If it is the best value the particle has achieved so far, the

particle stores that value as `personal best'. The best �tness value achieved by any

particle during current iteration is stored as `global best'. The pseudocode of the particle

swarm optimization technique is given by Algorithm is 6.1.
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Algorithm 6.1: Particle swarm optimization

Data: swarm of particles
Result: best solution
foreach particle in the swarm do

initialize the particle position;
initialize the particle velocity;
set personal best and global best;

end

repeat

foreach particle in the swarm do
evaluate the �tness of the particle;
update velocity of the particle;
update position of the particle;
�nd the personal best;

end

�nd the global best;
until convergence or maximum iterations ;

Let S = fZbjb = 1; 2; : : : ; Bg be a swarm initialized with initial HR images as the

particles. The �tness of the particle Zb at n
th iteration is denoted by F n

Zb
. The �tness

function in our case is the cost function that has to be minimized. Let Zn
bp be the personal

best of particle Zb and Z
n
g be the group best at the nth iteration. The �tness values of Zn

bp

and Zn
g are denoted by FZn

bp
and FZng , respectively. While using the PSO the velocity Vb

and position Zb after n
th iteration are updated according to the following two equations

[170],

V n+1
b = wV n

b + c1r1(FZn
bp
� F n

Zb
) + c2r2(FZng � F n

Zb
); (6.4)

and

Zn+1
b = Zn

b + V n
b ; (6.5)

where r1 and r2 are random numbers uniformly distributed in [0; 1]. The equation (6.4)

consists of three terms. The �rst term provides the `
ying particles' with a degree of

memory capability allowing the exploration of new search space areas. The second term

is the `cognition' term, which represents the private thinking of the particle itself. The

third term is the `social' term, which represents the collaboration among the particles.

The inertia weight w serves as a memory of previous velocities [171]. A large value

favors exploration, while a small inertia favors exploitation. The constants c1 and c2

are cognitive and social parameters re
ecting the weighting of stochastic acceleration
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terms that pull each particle toward personal best and global best positions, respectively.

Equation (6.4) is used to calculate the particle's new velocity according to its previous

velocity and the distances of its current position from its own best experience (position)

and the group's best experience. The particle 
ies toward a new position according to

equation (6.5). The performance of each particle is measured according to a pre-de�ned

�tness function. The iterative process is repeated until the number of iteration exceeds

the maximum number or stopping criteria is met. The `global best' particle at the end of

iterative process represents the solution. The 
ow-chart of the PSO algorithm is shown

in Figure 6.2.

6.4 Experimental Results

We conducted experiments on real images captured by adjusting the zoom setting of a

camera. The observed images Y1, Y2 and Y3 are shown in Figure 6.3(a)-(c). The zoom

factor between Y1 and Y2 is 2 that between Y1 and Y3 is 4. All observations are of size

64 � 64 pixels. Our results are compared with other approach using the qualitative as

well as quantitative measures. In this chapter, the quality of a super-resolution image

is de�ned as the similarity of the super-resolved image with the original high-resolution

image. We use MSE and Structural Similarity index to measure the quality of results.

MSE is the most widely used metric for quantitative comparison of images in the areas

of compression, restoration, super-resolution etc. MSE have clear physical meaning and

have mathematically convenient expressions for comparing the performance of di�erent

approaches. However there are some implicit assumptions while using this measure [172].

These include: the signal �delity is independent of spatial relationship between the sam-

ples of original signal and it is independent of any relationship between original signal and

error signal. The faithfulness with which the signal is reconstructed is also independent

of the signs of error signal samples giving equal importance to all signal samples. Because

of these limitations, MSE is not an accurate measure for comparison. Motivated by the

fact that the human visual system is highly sensitive to structural distortion, the authors

in [173] introduced an alternative measure for quality assessment termed as structural

similarity (SSIM). This new measure evaluates the structural changes between two com-

plex structured signals directly (note that we use signal term in the above explanation,
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Figure 6.2: Flow-chart of the particle swarm optimization.
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it applies to images as well). SSIM can be viewed as a quality measure of one of the

images being compared, while the other image is regarded as of perfect quality. The im-

plementation of SSIM takes into account contrast, luminance, and structure to determine

similarity between the local patches in the images under comparison.

The SSIM between two images is computed as follows: Let the original image and

the super-revolved image be divided into several patches. Let x and y be the image

patches taken from the same locations of the two images under comparison. Then the

local similarity S(x;y) can be calculated using,

S(x;y) =
� 2�x�y +K1

�2x + �2y +K1

�� 2�x�y +K2

�2x + �2y +K2

�� 2�xy +K3

�x�y +K3

�
; (6.6)

where �x and �y are local sample means of image patches x and y, respectively. Similarly

�x and �y are the local sample standard deviations of x and y, respectively. Here K1, K2

and K3 are small positive constants preventing the numerical instability that may arise

because of division with small denominators and �xy is the sample cross correlation of x

and y after removing their means. It is obtained using,

�xy =
1

T � 1

TX
i=1

(xi � �x)(yi � �y): (6.7)

Here xi and yi represent pixel intensities in images patches x and y, respectively and T

is the total number of pixels in each image patch x and y. The SSIM score of the entire

image is computed by averaging the SSIM values of the patches across the image. The

value of SIMM ranges between 0 and 1, where a higher value means a higher structural

similarity and hence better image quality and the highest value 1 means excellent quality

indicating perfect similarity. For more details see [172]. In our case, the patch size is set at

5�5 and parametersK1, K2 andK3 are set to 0:05. PSO parameters are chosen as c1 = 1,

c2 = 0:5 and w = 1. We expand the least zoomed images using existing interpolation

techniques and use them as particles in PSO. In our experiment, the swarm consists of 10

particles. Three particles are obtained using bilinear, bicubic and lanczose interpolation

techniques. The initial SR approximation is used as a particle. The remaining particles

are obtained by manipulating these four particles. The MRF model parameters � and 


estimated from the SR approximation using homotopy continuation method proposed in
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Image 1

Image 2

Image 3

Image 4

(a) (b) (c) (d) (e) (f)

Figure 6.3: Performance comparison. (a)-(c) Observations: (a) is the least zoomed ob-
servation and (c) is the most zoomed one, (d) ground-truth image for observation in (a),
(e) image super-resolved using the approach in [1], and (f) image super-resolved using
proposed approach.
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Image � 

Image 1 0.02057 4.2863
Image 2 0.03023 5.9252
Image 3 0.01337 2.7917
Image 4 0.00913 3.1809

Table 6.1: Model parameters estimated using homotopy continuation method [5].

[5] are shown in Table 6.1.

We show the e�ectiveness of the proposed approach by conducting experiment on real

world images having di�erent textures. The results of our experiments for decimation

factor q = 4 are shown in Figure 6.3. Figure 6.3(d) show the ground-truth images or

high resolution images for the observations in Figure 6.3(a). Figure 6.3(e) show the im-

ages super-resolved using the algorithm proposed in [1]. Images super-resolved using the

proposed approach using PSO are displayed in Figure 6.3(f). Image 1 contains variety of

objects: a rectangle with an oval shaped logo inside it, a wheel with spokes, irregularly

shaped stones at bottom, and some smooth regions. Image 1 in Figure 6.3(f) exhibits

better texture at bottom than that in Figure 6.3(e). The rectangle in the center and logo

inside it look pleasant and appear structurally similar to those in the ground-truth image.

Image 2 contains smooth regions along with a large number of horizontal and vertical

edges. The Image 2 super-resolved using the proposed approach looks more similar to

the ground-truth as compared to that displayed in Figure 6.3(e). Image 3 consists of

English text in di�erent shape and size. Here also characters in the text look sharper

in the image super-resolved using the proposed approach. Image 4 is a combination of

textured regions, smooth regions and edges in di�erent directions. Image in Figure 6.3(f)

shows marginal improvement over that in Figure 6.3(e). The comparison shows that

the SR reconstruction using the proposed approach is visually better, �lling the recon-

structed image with realistic �ne spatial details, such as sharp lines and edges. The close

examination of the super-resolved images in Figure 6.3(e) reveals that the reconstruction

at the peripheral region of the image is inferior than that at the central region. Visual

assessments suggest that a the proposed method outperform the method in [1]. Possible

reasons are: 1) The authors in [1] use the MRF model parameters that are adjusted on

trial and error basis; 2) Very little information is available for SR reconstruction at the

peripheral region of an image; 3) Initial estimate is obtained using successive bilinear
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Image Optimization Time
(in seconds)
SA PSO

Image 1 16730.94 10.586
Image 2 14641.36 10.529
Image 3 15419.78 10.285
Image 4 14827.32 10.549

Table 6.2: Optimization time comparison.

Image MSE SSIM
MRF Proposed MRF Proposed

with SA approach with SA approach
Image 1 0.026226 0.026181 0.9881 0.9789
Image 2 0.023515 0.022756 0.7876 0.8218
Image 3 0.020392 0.019700 0.6800 0.7912
Image 4 0.018696 0.017865 0.6767 0.7909

Table 6.3: Performance comparison between the proposed approach and the approach in
[1] using two image quality measures. Lower values of MSE and higher values of SSIM
represent better image quality.

interpolation.

Table 6.3 shows the performance improvement over the other method using MSE and

SSIM. It show that our approach can attain lower MSE than the other method in all

cases. The SSIM measure which is more sensitive to structural distortion show better

enhancements with the proposed approach. Table 6.2 show computational advantage

of using PSO for optimization over using simulated annealing. It can be seen that the

optimization time for SA is almost around 4 hours, whereas that for the proposed method

is less than 11 seconds. When comparing these two approaches, the proposed approach

outperforms the other approach in terms of both, the processing time and reconstruction

quality.

6.5 Conclusions

In this chapter, we have addressed the problem of capturing the right amount of scene in-

formation from the perspective of zoom based super-resolution. We have presented a fast

approach for super-resolving the least zoomed observation at the resolution of the most

zoomed observation. The solution is proposed in a MAP-MRF framework. Although,
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MRF conveniently allows modeling of contextual constraints, it produces smooth solution.

We incorporated line �elds for preserving edges and arrived at non convex cost function.

A learning based approach is proposed for obtaining an initial HR approximation. The

aliasing matrix entries and the discontinuity preserving MRF parameters were estimated

using the learned SR approximation. Visual comparison between the ground-truth im-

ages and the SR images obtained using proposed approach �nds signi�cant improvements

in terms of details. Better enhancements are found at the edges and boundaries of ob-

jects. Low computational speed is one of the key issues while optimizing a non convex

cost function. We have proposed use of particle swarm optimization. With the use of

PSO signi�cant speed up has been achieved. Our results show that the proposed method

outperforms conventional zoom based image super-resolution approach in terms of both,

reconstruction quality and processing speed.





Chapter 7

Conclusions and Future Research

Work

7.1 Conclusions

In this thesis, we have addressed the problem of motion-free super-resolution. Motion

based super-resolution techniques reconstruct super-resolution from multiple observations

with sub-pixel shift among them. Accuracy of the registration of these observations plays

an important role in the quality of the �nal solution. Since the registration is a com-

putationally complex process, it has to be avoided. The motion-free super-resolution

techniques use the observations that need not be registered. In addition, there may be

situations where more than one observations are not available. Since, it is impossible

to extract additional non-redundant information from the single observation, we needed

to seek other sources for deriving additional information. Further, the fact that the

richness of the natural images is di�cult to capture analytically, motivated us to con-

struct a database of low resolution images and its high resolution versions and use it to

get non-redundant information for the super-resolved image. We have proposed learn-

ing based techniques which attempt to derive the details of high resolution image from

the database by analyzing the spatial relationship between the image features across the

scales. We have considered the problems of zoom based super-resolution and single frame

super-resolution. We solved these inverse problems using regularization approach. We

represented the forward process of image formation using a linear model. In zoom based

125
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super-resolution problems we estimated the aliasing using the most zoomed observation

and corresponding part in the least zoomed image. We represented the high resolution

image �eld using di�erent model and considered smoothness prior as well as edge pre-

serving priors. The resulting cost functions were minimized using either simple gradient

descent technique or global optimization technique depending on the nature of the cost

function.

We began with the zoom based super-resolution. Given the observations of a scene

captured by varying the zoom settings of a camera, we obtained the super-resolution of

the least zoomed image at the resolution of the most zoomed observation. Normally, the

intensity of the aliased pixel in the low resolution image obtained by averaging the corre-

sponding pixels in the high resolution images. However in practice, the aliasing depends

on several factors and has to be estimated. The availability of a portion of the scene

at di�erent zoom factor, motivated us to estimate the aliasing. We have proposed the

technique of estimating the aliasing (decimation). In order to make the ill-posed problem

a better posed, we have employed smoothness prior to constrain the space of solutions.

We represented the high resolution image �eld using MRF �eld and adjusted the model

parameters on trial and error basis. We have shown the e�cacy of the proposed approach

by conducting experiments on real world images. We have also applied the proposed ap-

proach to super-resolve the multispectral (MS) images in remote sensing. In this case

we have used the high resolution panchromatic image to estimate aliasing on the MS

images. A better solution could have been obtained if the MRF model parameters were

estimated from the observations themselves. However, the estimation of these parame-

ter is computationally taxing as it requires the computation of partition function. This

motivated us to consider a di�erent prior model that do not put computational burden.

We assumed that the intensity of a pixel in an image is the linear combinations of the

intensities of its neighboring pixels. We have considered the autoregressive prior model

to represent high resolution image �eld and have obtained the super-resolution. It has

been shown that proposed approach yields better results for both the super-resolution

and multi-resolution fusion in remotely sensed images.

In order to capture the correspondence between low resolution image and their high

resolution versions e�ectively, we have prepared a database of images captured at di�er-

ent resolutions by changing the zoom setting of a camera and used it to learn the high
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frequency details of the super-resolved image. We have proposed a new learning based

technique to obtain the close approximation to the super-resolved image. The accurate

estimation of the prior model parameters requires the high resolution image. However

in super-resolution problems the high resolution images are not available. We obtained

better estimates of the parameters from the close approximation to the super-resolution

image and use them in the minimization. In earlier experiments, we used homogeneous

prior models. Since, the natural images consists of edges, and wide variety of textured

regions, it cannot be considered as homogeneous �elds. We have proposed here an in-

homogeneous Gaussian Markov random �eld prior model that can adapt to the local

structure in an image. Since it is adaptive to the local structures there is no need for sep-

arate prior for preserving edges as in previous experiment. We have applied the algorithm

to color images and shown the results for real world images.

Although wavelets provide computational advantage, it fails to learn the edges in

arbitrary directions other than horizontal, vertical and diagonal directions. In order to

alleviate this di�culty, we have proposed a new learning technique based on discreet

cosine transform (DCT). We use the database consisting of low resolution images and

their high resolution versions and learn the DCT coe�cients corresponding to the high

resolution content. The learned image is considered as a close approximation to the

super-resolved image and is used as the initial estimate while minimizing. As discussed

earlier, the natural images cannot be represented using homogeneous models, we have

employed non-homogeneous AR model prior and obtained the prior model parameters

from the close approximation. We obtained super-resolution by minimizing the cost

function using gradient descent technique.

We have proposed a fast approach to the zoom based super-resolution problem. We

obtain close approximation to the super-resolved image using learning technique and use

the same to estimate the aliasing and prior model parameters. We have solved the problem

using MAP-MRF formulation. We have introduced discontinuity preserving MRF model

prior and arrived at non convex cost function. The introduction of the discontinuity

preserving prior give rise to a computationally expensive optimization process which

makes the super-resolution reconstruction very slow. We have optimized the cost function

using particle swarm optimization. The initial particles were obtained using conventional

interpolation techniques and the learning approaches based on DCT and DWT. The
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results shows that the proposed approach o�ers signi�cant computational advantage over

the other methods.

7.2 Future Research Work

Super-resolution is an ill-posed inverse problem. Solution of this problem requires addi-

tional information which may be available from either multiple observations or a huge

database consisting of high resolution images. Most of the super-resolution techniques

su�er from one or more disadvantages such as high computational complexity, need for

huge training database, need for registration and poor visual quality. Therefore several

of these issues are to be appropriately addressed in future. In this section, we discuss the

directions for future research work to produce good practical super-resolution.

� The LR and HR images captured by varying the resolution setting of a camera

truly represent the spatial features relationship between low resolution image and

its high resolution versions. We have proposed wavelet transform based learning

technique using the database consisting of such pairs. However the wavelets can

capture only limited directional information. In addition 2-D wavelets are not good

at capturing edges along counters. The natural images contain intrinsic geometric

structures with edges located along smooth curves as well. The contourlet transform

of an image consists of basis images oriented at various directions in multiple scales

with 
exible aspect ratios. Since the contourlet transforms are capable of capturing

edges at arbitrary edges, one can consider contourlet transform for learning the �ne

details from the database of LR-HR images.

� In image formation process model we have assumed space invariant blur. This

enables us the simple formulation for the data �tting term. However, in practice,

the blur need not be space invariant hence it has to be estimated. One has to

go down the resolution pyramid of the training images to locate the best match if

the input images are blurred. This is a di�cult problem as the scale is unknown.

Further there may not exactly match the given levels of decomposition scales. A

simple approach to handle the space variant blur is to divide the entire image into

small blocks and super-resolve each of them individually.
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� In our experiment we have employed a simple linear model for image formation

process. While estimating decimation, a pixel in LR image is related with corre-

sponding pixels in the HR image. Since there are limited number of the HR pixels

for an LR pixel (depending on the decimation factor), the accurate estimation of the

decimation may not be possible. One can consider the splines to model the image

formation process and obtain better representation of the process by considering

more HR pixels in larger neighborhood of an LR pixel.

� The prior for regularization is obtained by modeling the HR image as an MRF that

can be expressed as a joint probability density function using the Gibbs distribution.

The marginal distribution prior can be obtained by passing the HR image or its

close approximation through di�erent �lters and computing the histograms of the

�ltered outputs. One can construct a bank of di�erent types of �lters such as

Laplacian of Gaussian and Gabor �lters with di�erent parameters and arrive at

cost function which can be optimized using simpler global optimization techniques

such as particle swarm optimization or graph-cut.

� The proposed techniques for image super-resolution can be extended for video super-

resolution. The video super-resolution requires the super-resolution reconstruction

in both the spatial domain and temporal domain. One can develop algorithm for

reconstructing additional temporal frames using motion �elds. With the spatial

super-resolution of all the frames and the temporal super-resolution of the video

sequence, one can obtain super-resolved video by concatenating the resulting SR

frames.

� Most of the super-resolution algorithms are based on iterative process. This limits

the use of the algorithms for real-times application such as video super-resolution.

It will be interesting to see the development towards the computationally e�cient

super-resolution algorithm that may use a strong but di�erentiable prior such that

the optimization converges fast and lead to good quality output image.
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